skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 14, 2026

Title: PKS 2131−021—Discovery of Strong Coherent Sinusoidal Variations from Radio to Optical Frequencies: Compelling Evidence for a Blazar Supermassive Black Hole Binary
Abstract Haystack and Owens Valley Radio Observatory observations recently revealed strong, intermittent, sinusoidal total flux-density variations that maintained their coherence between 1975 and 2021 in the blazar PKS 2131−021 (z= 1.283). This was interpreted as possible evidence of a supermassive black hole binary (SMBHB). Extended observations through 2023 show a coherence over 47.9 yr, with an observed periodP15 GHz= (1739.8 ± 17.4) days. We reject, withp-value = 2.09 × 10−7, the hypothesis that the variations are due to random fluctuations in the red noise tail of the power spectral density. There is clearly a physical phenomenon in PKS 2131−021 producing coherent sinusoidal flux-density variations. We find the coherent sinusoidal intensity variations extend from below 2.7 GHz to optical frequencies, from which we derive an observed periodPoptical= (1764 ± 36) days. Across this broad frequency range, there is a smoothly varying monotonic phase shift in the sinusoidal variations with frequency. Hints of periodic variations are also observed atγ-ray energies. The importance of well-vetted SMBHB candidates to searches for gravitational waves is pointed out. We estimate the fraction of blazars that are SMBHB candidates to be >1 in 100. Thus, monitoring programs covering tens of thousands of blazars could discover hundreds of SMBHB candidates.  more » « less
Award ID(s):
2407603 2407604
PAR ID:
10592557
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Institute of Physics
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
985
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
59
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aims.We introduce the TELAMON program which is using the Effelsberg 100-m telescope to monitor the radio spectra of active galactic nuclei (AGN) under scrutiny in astroparticle physics, specifically TeV blazars and candidate neutrino-associated AGN. Here, we present and characterize our main sample of TeV-detected blazars. Methods.We analyzed the data sample from the first ∼2.5 yr of observations between August 2020 and February 2023 in the range from 14 GHz to 45 GHz. During this pilot phase, we observed all 59 TeV-detected blazars in the Northern Hemisphere (i.e., Dec > 0°) known at the time of observation. We discuss the basic data reduction and calibration procedures used for all TELAMON data and introduce a sub-band averaging method used to calculate average light curves for the sources in our sample. Results.The TeV-selected sources in our sample exhibit a median flux density of 0.12 Jy at 20 mm, 0.20 Jy at 14 mm, and 0.60 Jy at 7 mm. The spectrum for most of the sources is consistent with a flat radio spectrum and we found a median spectral index (S(ν)∝να) ofα = −0.11. Our results on flux density and spectral index are consistent with previous studies of TeV-selected blazars. Compared to the GeV-selected F-GAMMA sample, TELAMON sources are significantly fainter in the radio band. This is consistent with the double-humped spectrum of blazars being shifted towards higher frequencies for TeV-emitters (in particular for high-synchrotron peaked BL Lac type objects), which results in a lower radio flux density. The spectral index distribution of our TeV-selected blazar sample is not significantly different from the GeV-selected F-GAMMA sample. Moreover, we present a strategy to track the light curve evolution of sources in our sample for future variability and correlation analysis. 
    more » « less
  2. Abstract We present the detection of rotationally modulated, circularly polarized radio emission from the T8 brown dwarf WISE J062309.94−045624.6 between 0.9 and 2.0 GHz. We detected this high-proper-motion ultracool dwarf with the Australian SKA Pathfinder in 1.36 GHz imaging data from the Rapid ASKAP Continuum Survey. We observed WISE J062309.94−045624.6 to have a time and frequency averaged StokesIflux density of 4.17 ± 0.41 mJy beam−1, with an absolute circular polarization fraction of 66.3% ± 9.0%, and calculated a specific radio luminosity ofLν∼ 1014.8erg s−1Hz−1. In follow-up observations with the Australian Telescope Compact Array and MeerKAT we identified a multipeaked pulse structure, used dynamic spectra to place a lower limit ofB> 0.71 kG on the dwarf’s magnetic field, and measured aP= 1.912 ± 0.005 hr periodicity, which we concluded to be due to rotational modulation. The luminosity and period we measured are comparable to those of other ultracool dwarfs observed at radio wavelengths. This implies that future megahertz to gigahertz surveys, with increased cadence and improved sensitivity, are likely to detect similar or later-type dwarfs. Our detection of WISE J062309.94−045624.6 makes this dwarf the coolest and latest-type star observed to produce radio emission. 
    more » « less
  3. We report the X-ray polarization properties of the high-synchrotron-peaked (HSP) blazar PKS 2155−304 based on observations with the Imaging X-ray Polarimetry Explorer (IXPE). We observed the source between Oct 27 and Nov 7, 2023. We also conducted an extensive contemporaneous multiwavelength (MW) campaign. We find that during the first half (T1) of the IXPE pointing, the source exhibited the highest X-ray polarization degree detected for an HSP blazar thus far, (30.7 ± 2.0)%; this dropped to (15.3 ± 2.1)% during the second half (T2). The X-ray polarization angle remained stable during the IXPE pointing at 129.4° ±1.8° and 125.4° ±3.9° duringT1andT2, respectively. Meanwhile, the optical polarization degree remained stable during the IXPE pointing, with average host-galaxy-corrected values of (4.3 ± 0.7)% and (3.8 ± 0.9)% during theT1andT2, respectively. During the IXPE pointing, the optical polarization angle changed achromatically from ∼140° to ∼90° and back to ∼130°. Despite several attempts, we only detected (99.7% conf.) the radio polarization once (duringT2, at 225.5 GHz): with degree (1.7 ± 0.4)% and angle 112.5° ±5.5°. The direction of the broad pc-scale jet is rather ambiguous and has been found to point to the east and south at different epochs; however, on larger scales (> 1.5 pc) the jet points toward the southeast (∼135°), similarly to all of the MW polarization angles. Moreover, the X-ray-to-optical polarization degree ratios of ∼7 and ∼4 duringT1andT2, respectively, are similar to previous IXPE results for several HSP blazars. These findings, combined with the lack of correlation of temporal variability between the MW polarization properties, agree with an energy-stratified shock-acceleration scenario in HSP blazars. 
    more » « less
  4. Abstract The radio galaxy 3C 66B has been hypothesized to host a supermassive black hole binary (SMBHB) at its center based on electromagnetic observations. Its apparent 1.05 yr period and low redshift (∼0.02) make it an interesting testbed to search for low-frequency gravitational waves (GWs) using pulsar timing array (PTA) experiments. This source has been subjected to multiple searches for continuous GWs from a circular SMBHB, resulting in progressively more stringent constraints on its GW amplitude and chirp mass. In this paper, we develop a pipeline for performing Bayesian targeted searches for eccentric SMBHBs in PTA data sets, and test its efficacy by applying it to simulated data sets with varying injected signal strengths. We also search for a realistic eccentric SMBHB source in 3C 66B using the NANOGrav 12.5 yr data set employing PTA signal models containing Earth term-only as well as Earth+pulsar term contributions using this pipeline. Due to limitations in our PTA signal model, we get meaningful results only when the initial eccentricitye0< 0.5 and the symmetric mass ratioη> 0.1. We find no evidence for an eccentric SMBHB signal in our data, and therefore place 95% upper limits on the PTA signal amplitude of 88.1 ± 3.7 ns for the Earth term-only and 81.74 ± 0.86 ns for the Earth+pulsar term searches fore0< 0.5 andη> 0.1. Similar 95% upper limits on the chirp mass are (1.98 ± 0.05) × 109and (1.81 ± 0.01) × 109M. These upper limits, while less stringent than those calculated from a circular binary search in the NANOGrav 12.5 yr data set, are consistent with the SMBHB model of 3C 66B developed from electromagnetic observations. 
    more » « less
  5. Abstract We present optical, radio, and X-ray observations of a rapidly evolving transient SN2019wxt (PS19hgw), discovered during the search for an electromagnetic counterpart to the gravitational-wave (GW) trigger S191213g. Although S191213g was not confirmed as a significant GW event in the off-line analysis of LIGO-Virgo data, SN2019wxt remained an interesting transient due to its peculiar nature. The optical/near-infrared (NIR) light curve of SN2019wxt displayed a double-peaked structure evolving rapidly in a manner analogous to currently known ultrastripped supernovae (USSNe) candidates. This double-peaked structure suggests the presence of an extended envelope around the progenitor, best modeled with two components: (i) early-time shock-cooling emission and (ii) late-time radioactive56Ni decay. We constrain the ejecta mass of SN2019wxt atMej≈ 0.20M, which indicates a significantly stripped progenitor that was possibly in a binary system. We also followed up SN2019wxt with long-term Chandra and Jansky Very Large Array observations spanning ∼260 days. We detected no definitive counterparts at the location of SN2019wxt in these long-term X-ray and radio observational campaigns. We establish the X-ray upper limit at 9.93 × 10−17erg cm−2s−1and detect an excess radio emission from the region of SN2019wxt. However, there is little evidence for SN1993J- or GW170817-like variability of the radio flux over the course of our observations. A substantial host-galaxy contribution to the measured radio flux is likely. The discovery and early-time peak capture of SN2019wxt in optical/NIR observations during EMGW follow-up observations highlight the need for dedicated early, multiband photometric observations to identify USSNe. 
    more » « less