skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Habitat edges decrease plant reproductive output in fragmented landscapes
Abstract Habitat loss is a major threat to biodiversity, but the effects of habitat fragmentation are less clear. Examining drivers of key demographic processes, such as reproduction, will clarify species‐level responses to fragmentation and broader effects on biodiversity. Yet, understanding how fragmentation affects demography has been challenging due to the many ways landscapes are altered by co‐occurring habitat loss and fragmentation, coupled with the rarity of experiments to disentangle these effects.In a large, replicated fragmentation experiment with open savanna habitats surrounded by pine plantation forests, we tested the effects of inter‐patch connectivity, patch edge‐to‐area ratio, and within‐patch distance from an edge on plant reproductive output. Using five experimentally planted species of restoration interest—three wind‐pollinated grass species and two insect‐pollinated forb species—we measured plant flowering, pollination rate, and seed production.All plant species were more likely to flower and produce more flowering structures farther from the forest edge. Connectivity and distance from an edge, however, had no effect on the pollination rate (regardless of pollination mode). Despite no influence of fragmentation on pollination, plant seed production increased farther from the edge for four of five species, driven by the increase in flower production.Synthesis. Altogether, we demonstrate that plant reproductive output (seed production) is decreased by habitat fragmentation through edge effects on flowering. Our work provides evidence that an important contributor to plant demography, reproductive output, is altered by edge effects in fragmented patches. These species‐level impacts of fragmentation may provide insight into the mechanisms of fragmentation effects on community‐level changes in biodiversity.  more » « less
Award ID(s):
1913501 1912729
PAR ID:
10592560
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Ecology
Volume:
113
Issue:
3
ISSN:
0022-0477
Page Range / eLocation ID:
531 to 541
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many plant species in historically fire-dependent ecosystems exhibit fire-stimulated flowering. While greater reproductive effort after fire is expected to result in increased reproductive outcomes, seed production often depends on pollination, the spatial distribution of prospective mates, and the timing of their reproductive activity. Fire-stimulated flowering may thus have limited fitness benefits in small, isolated populations where mating opportunities are restricted and pollination rates are low. We conducted a 6-y study of 6,357 Echinacea angustifolia (Asteraceae) individuals across 35 remnant prairies in Minnesota (USA) to experimentally evaluate how fire effects on multiple components of reproduction vary with population size in a common species. Fire increased annual reproductive effort across populations, doubling the proportion of plants in flower and increasing the number of flower heads 65% per plant. In contrast, fire’s influence on reproductive outcomes differed between large and small populations, reflecting the density-dependent effects of fire on spatiotemporal mating potential and pollination. In populations with fewer than 20 individuals, fire did not consistently increase pollination or annual seed production. Above this threshold, fire increased mating potential, leading to a 24% increase in seed set and a 71% increase in annual seed production. Our findings suggest that density-dependent effects of fire on pollination largely determine plant reproductive outcomes and could influence population dynamics across fire-dependent systems. Failure to account for the density-dependent effects of fire on seed production may lead us to overestimate the beneficial effects of fire on plant demography and the capacity of fire to maintain plant diversity, especially in fragmented habitats. 
    more » « less
  2. Abstract Context Habitat fragmentation is a leading threat to biodiversity, yet the impacts of fragmentation on most taxa, let alone interactions among those taxa, remain largely unknown. Objectives We studied how three consequences of fragmentation—reduced patch connectivity, altered patch shape, and edge proximity—impact plant-dwelling mite communities and mite-plant-fungus interactions within a large-scale habitat fragmentation experiment. Methods We sampled mite communities from the leaves of Quercus nigra (a plant species that has foliar domatia which harbor fungivorous and predacious mites) near and far from edge within fragments of varying edge-to-area ratio (shape) and connectivity via corridors. We also performed a mite-exclusion experiment across these fragmentation treatments to test the effects of mite presence and fungal hyphal abundance on leaf surfaces. Results Habitat edges influenced the abundance and richness of leaf-dwelling mites; plants closer to the edge had higher mite abundance and species richness. Likewise, hyphal counts were higher on leaves near patch edges. Despite both mite and fungal abundance being higher at patch edges, leaf hyphal counts were not impacted by mite abundance on those leaves. Neither patch shape nor connectivity influenced mite abundance, mite species richness, or the influence of mites on leaf surface fungal abundance. Conclusion Our results suggest that mites and foliar fungi may be independently affected by edge-structured environmental gradients, like temperature, rather than trophic effects. We demonstrate that large-scale habitat fragmentation and particularly edge effects can have impacts on multiple levels of microscopic communities, even in the absence of cascading trophic effects. 
    more » « less
  3. Summary Climate models predict that everwet western Amazonian forests will face warmer and wetter atmospheric conditions, and increased cloud cover. It remains unclear how these changes will impact plant reproductive performance, such as flowering, which plays a central role in sustaining food webs and forest regeneration. Warmer and wetter nights may cause reduced flower production, via increased dark respiration rates or alteration in the reliability of flowering cue‐based processes. Additionally, more persistent cloud cover should reduce the amounts of solar irradiance, which could limit flower production.We tested whether interannual variation in flower production has changed in response to fluctuations in irradiance, rainfall, temperature, and relative humidity over 18 yrs in an everwet forest in Ecuador.Analyses of 184 plant species showed that flower production declined as nighttime temperature and relative humidity increased, suggesting that warmer nights and greater atmospheric water saturation negatively impacted reproduction. Species varied in their flowering responses to climatic variables but this variation was not explained by life form or phylogeny.Our results shed light on how plant communities will respond to climatic changes in this everwet region, in which the impacts of these changes have been poorly studied compared with more seasonal Neotropical areas. 
    more » « less
  4. Abstract The arrangement of plant species within a landscape influences pollination via changes in pollinator movement trajectories and plant–pollinator encounter rates. Yet the combined effects of landscape composition and pollinator traits (especially specialisation) on pollination success remain hard to quantify empirically.We used an individual‐based model to explore how landscape and pollinator specialisation (degree) interact to influence pollination. We modelled variation in the landscape by generating gradients of plant species intermixing—from no mixing to complete intermixing. Furthermore, we varied the level of pollinator specialisation by simulating plant–pollinator (six to eight species) networks of different connectance. We then compared the impacts of these drivers on three proxies for pollination: visitation rate, number of consecutive visits to the focal plant species and expected number of plants pollinated.We found that the spatial arrangements of plants and pollinator degree interact to determine pollination success, and that the influence of these drivers on pollination depends on how pollination is estimated. For most pollinators, visitation rate increases in more plant mixed landscapes. Compared to the two more functional measures of pollination, visitation rate overestimates pollination service. This is particularly severe in landscapes with high plant intermixing and for generalist pollinators. Interestingly, visitation rate is less influenced by pollinator traits (pollinator degree and body size) than are the two functional metrics, likely because ‘visitation rate’ ignores the order in which pollinators visit plants. However, the visitation sequence order is crucial for the expected number of plants pollinated, since only prior visits to conspecific individuals can contribute to pollination. We show here that this order strongly depends on the spatial arrangements of plants, on pollinator traits and on the interaction between them.Taken together, our findings suggest that visitation rate, the most commonly used proxy for pollination in network studies, should be complemented with more functional metrics which reflect the frequency with which individual pollinators revisit the same plant species. Our findings also suggest that measures of landscape structure such as plant intermixing and density—in combination with pollinators' level of specialism—can improve estimates of the probability of pollination. 
    more » « less
  5. Climate change is likely to alter both flowering phenology and water availability for plants. Either of these changes alone can affect pollinator visitation and plant reproductive success. The relative impacts of phenology and water, and whether they interact in their impacts on plant reproductive success remain, however, largely unexplored. We manipulated flowering phenology and soil moisture in a factorial experiment with the subalpine perennial Mertensia ciliata (Boraginaceae). We examined responses of floral traits, floral abundance, pollinator visitation, and composition of visits by bumblebees vs. other pollinators. To determine the net effects on plant reproductive success, we also measured seed production and seed mass. Reduced water led to shorter, narrower flowers that produced less nectar. Late flowering plants produced fewer and shorter flowers. Both flowering phenology and water availability influenced pollination and reproductive success. Differences in flowering phenology had greater effects on pollinator visitation than did changes in water availability, but the reverse was true for seed production and mass, which were enhanced by greater water availability. The probability of receiving a flower visit declined over the season, coinciding with a decline in floral abundance in the arrays. Among plants receiving visits, both the visitation rate and percent of non-bumblebee visitors declined after the first week and remained low until the final week. We detected interactions of phenology and water on pollinator visitor composition, in which plants subject to drought were the only group to experience a late-season resurgence in visits by solitary bees and flies. Despite that interaction, net reproductive success measured as seed production responded additively to the two manipulations of water and phenology. Commonly observed declines in flower size and reward due to drought or shifts in phenology may not necessarily result in reduced plant reproductive success, which in M. ciliata responded more directly to water availability. The results highlight the need to go beyond studying single responses to climate changes, such as either phenology of a single species or how it experiences an abiotic factor, in order to understand how climate change may affect plant reproductive success. 
    more » « less