Abstract Artificial intelligence (AI) represents technologies with human‐like cognitive abilities to learn, perform, and make decisions. AI in precision agriculture (PA) enables farmers and farm managers to deploy highly targeted and precise farming practices based on site‐specific agroclimatic field measurements. The foundational and applied development of AI has matured considerably over the last 30 years. The time is now right to engage seriously with the ethics and responsible practice of AI for the well‐being of farmers and farm managers. In this paper, we identify and discuss both challenges and opportunities for improving farmers’ trust in those providing AI solutions for PA. We highlight that farmers’ trust can be moderated by how the benefits and risks of AI are perceived, shared, and distributed. We propose four recommendations for improving farmers’ trust. First, AI developers should improve model transparency and explainability. Second, clear responsibility and accountability should be assigned to AI decisions. Third, concerns about the fairness of AI need to be overcome to improve human‐machine partnerships in agriculture. Finally, regulation and voluntary compliance of data ownership, privacy, and security are needed, if AI systems are to become accepted and used by farmers.
more »
« less
‘I Just Don’t Trust Them’: Reasons for Distrust and Non-Disclosure in Demographic Questionnaires for Individuals in STEM
Demographic data pertain to people’s identities and behaviors. Analyses of demographic data are used to describe patterns and predict behaviors, to inform interface design, and even institutional decision-making processes. Demographic data thus need to be complete and correct to ensure they can be analyzed in ways that reflect reality. This study consists of interviews with 40 people in STEM and addresses how causes of relational (dis)trust in demographic data collection contribute to pervasive problems of missing and incorrect responses and disobliging responses (e.g., non-disclosure, false responses, attrition, and hesitancy to use services). The findings then guide a preliminary set of recommendations for cultivating trustworthiness based on recent developments in trust theory and designing for responsive and trustworthy systems. Specifically, we explore how demographic questionnaire design (e.g., item construction and instructions) can communicate necessary reassurances and transparency for users. The ongoing research provides interview-based recommendations for improving the quality and completeness of demographic data collection. This research adds to other recommendations on improving demographic questionnaires.
more »
« less
- Award ID(s):
- 2231874
- PAR ID:
- 10592612
- Publisher / Repository:
- Societies
- Date Published:
- Journal Name:
- Societies
- Volume:
- 14
- Issue:
- 7
- ISSN:
- 2075-4698
- Page Range / eLocation ID:
- 105
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Challenging behaviors significantly impact learning and socialization of autistic children and can stress and burden their caregivers. Documentation of challenging behaviors is fundamental for identifying what environmental factors influence them, such as how others respond to a child's such behaviors. Caregiver-tracked data on their child's challenging behaviors can help clinical experts make informed recommendations about how to manage such behaviors. To support caregivers in recording their children's challenging behaviors, we developed GeniAuti, a mobile-based data-collection tool built upon a clinical data collection form to document challenging behaviors and other clinically relevant contextual information such as place, duration, intensity, and what triggers such behaviors. Through an open-ended deployment with 19 parent-child pairs and three expert collaborators, caregivers found GeniAuti valuable for (1) becoming more attentive and reflective to behavioral contexts, including their own response strategies, (2) discovering positive aspects of their children's behaviors, and (3) promoting collaboration with clinical experts around the caregiver-tracked data to develop tailored intervention strategies for their children. However, participant experiences surface challenges of logging behaviors in social circumstances, conflicting views between caregivers and clinical experts around the structured recording process, and emotional struggles resulting from recording and reflecting on intensely negative experiences. Considering the complex nature of caregiver-based health tracking and caregiver--clinician collaboration, we suggest design opportunities for facilitating negotiations between caregivers and clinicians and accounting for caregivers' emotional needs.more » « less
-
Many systems today distribute trust across multiple parties such that the system provides certain security properties if a subset of the parties are honest. In the past few years, we have seen an explosion of academic and industrial cryptographic systems built on distributed trust, including secure multi-party computation applications (e.g., private analytics, secure learning, and private key recovery) and blockchains. These systems have great potential for improving security and privacy, but face a significant hurdle on the path to deployment. We initiate study of the following problem: a single organization is, by definition, a single party, and so how can a single organization build a distributed-trust system where corruptions are independent? We instead consider an alternative formulation of the problem: rather than ensuring that a distributed-trust system is set up correctly by design, what if instead, users can audit a distributed-trust deployment? We propose a framework that enables a developer to efficiently and cheaply set up any distributed-trust system in a publicly auditable way. To do this, we identify two application-independent building blocks that we can use to bootstrap arbitrary distributed-trust applications: secure hardware and an append-only log. We show how to leverage existing implementations of these building blocks to deploy distributed-trust systems, and we give recommendations for infrastructure changes that would make it easier to deploy distributed-trust systems in the future.more » « less
-
ABSTRACT. Data availability challenges the management of small-scale fisheries in large river basins. One way to circumvent the challenges of data collection is to rely on local stakeholders who are well-positioned to collect data that can inform management through community-based monitoring (CBM). Although science and management has increasingly considered opportunities for community involvement in scientific research, the efficacy of these programs are rarely assessed. We describe a current CBM initiative in the Kuskokwim River Basin of western Alaska. We then explore how existing approaches for incorporating local involvement in fisheries research and management measure against claims made by CBM programs to understand pathways for data utility for decision makers and approaches to capacity building and meaningful engagement of local citizens. We identify major gaps in the CBM literature and explore one of these gaps through an interview-based study of public participation in the Kuskokwim. We find that the CBM program intent to collect high quality data was complemented by increasing trust in data stewards. Ultimately, through our interview findings we illustrate how definitions of local engagement differ, how CBM data is used by decision makers, and how trust in data is dependent on trust in data stewards and the infrastructure that supports that stewardship.more » « less
-
With rapid growth in unhealthy diet behaviors, implementing strategies that improve healthy eating is becoming increasingly important. One approach to improving diet behavior is to continuously monitor dietary intake (e.g., calorie intake) and provide educational, motivational, and dietary recommendation feedback. Although technologies based on wearable sensors, mobile applications, and light-weight cameras exist to gather diet-related information such as food type and eating time, there remains a gap in research on how to use such information to close the loop and provide feedback to the user to improve healthy diet. We address this knowledge gap by introducing a diet behavior change framework that generates real-time diet recommendations based on a user’s food intake and considering user’s deviation from the suggested diet routine. We formulate the problem of optimal diet recommendation as a sequential decision making problem and design a greedy algorithm that provides diet recommendations such that the amount of change in user’s dietary habits is minimized while ensuring that the user’s diet goal is achieved within a given time-frame. This novel approach is inspired by the Social Cognitive Theory, which emphasizes behavioral monitoring and small incremental goals as being important to behavior change. Our optimization algorithm integrates data from a user’s past dietary intake as well as the USDA nutrition dataset to identify optimal diet changes. We demonstrate the feasibility of our optimization algorithms for diet behavior change using real-data collected in two study cohorts with a combined N=10 healthy participants who recorded their diet for up to 21 days.more » « less
An official website of the United States government

