skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Oleaginous Yeast Biology Elucidated With Comparative Transcriptomics
Extremophilic yeasts have favorable metabolic and tolerance traits for biomanufacturing‐ like lipid biosynthesis, flavinogenesis, and halotolerance – yet the connection between these favorable phenotypes and strain genotype is not well understood. To this end, this study compares the phenotypes and gene expression patterns of biotechnologically relevant yeasts Yarrowia lipolytica, Debaryomyces hansenii, and Debaryomyces subglobosus grown under nitrogen starvation, iron starvation, and salt stress. To analyze the large data set across species and conditions, two approaches were used: a “network‐first” approach where a generalized metabolic network serves as a scaffold for mapping genes and a “cluster‐first” approach where unsupervised machine learning co‐expression analysis clusters genes. Both approaches provide insight into strain behavior. The network‐first approach corroborates that Yarrowia upregulates lipid biosynthesis during nitrogen starvation and provides new evidence that riboflavin overproduction in Debaryomyces yeasts is overflow metabolism that is routed to flavin cofactor production under salt stress. The cluster‐first approach does not rely on annotation; therefore, the coexpression analysis can identify known and novel genes involved in stress responses, mainly transcription factors and transporters. Therefore, this work links the genotype to the phenotype of biotechnologically relevant yeasts and demonstrates the utility of complementary computational approaches to gain insight from transcriptomics data across species and conditions.  more » « less
Award ID(s):
1944046 2021871
PAR ID:
10592652
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Biotechnology and Bioengineering
Volume:
122
Issue:
3
ISSN:
0006-3592
Page Range / eLocation ID:
677 to 697
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rice, an important food resource, is highly sensitive to salt stress, which is directly related to food security. Although many studies have identified physiological mechanisms that confer tolerance to the osmotic effects of salinity, the link between rice genotype and salt tolerance is not very clear yet. Association of gene co‐expression network and rice phenotypic data under stress has penitential to identify stress‐responsive genes, but there is no standard method to associate stress phenotype with gene co‐expression network. A novel method for integration of gene co‐expression network and stress phenotype data was developed to conduct a system analysis to link genotype to phenotype. We applied aLASSO‐based method to the gene co‐expression network of rice with salt stress to discover key genes and their interactions for salt tolerance‐related phenotypes. Submodules in gene modules identified from the co‐expression network were selected by theLASSOregression, which establishes a linear relationship between gene expression profiles and physiological responses, that is, sodium/potassium condenses under salt stress. Genes in these submodules have functions related to ion transport, osmotic adjustment, and oxidative tolerance. We argued that these genes in submodules are biologically meaningful and useful for studies on rice salt tolerance. This method can be applied to other studies to efficiently and reliably integrate co‐expression network and phenotypic data. 
    more » « less
  2. O'Toole, George (Ed.)
    ABSTRACT Myxococcus xanthus copes with starvation by producing fruiting bodies filled with dormant and stress-resistant spores. Here, we aimed to better define the gene regulatory network associated with Nla28, a transcriptional activator/enhancer binding protein (EBP) and a key regulator of the early starvation response. Previous work showed that Nla28 directly regulates EBP genes that are important for fruiting body development. However, the Nla28 regulatory network is likely to be much larger because hundreds of starvation-induced genes are downregulated in a nla28 mutant strain. To identify candidates for direct Nla28-mediated transcription, we analyzed the downregulated genes using a bioinformatics approach. Nine potential Nla28 target promoters (29 genes) were discovered. The results of in vitro promoter binding assays, coupled with in vitro and in vivo mutational analyses, suggested that the nine promoters along with three previously identified EBP gene promoters were indeed in vivo targets of Nla28. These results also suggested that Nla28 used tandem, imperfect repeats of an 8-bp sequence for promoter binding. Interestingly, eight of the new Nla28 target promoters were predicted to be intragenic. Based on mutational analyses, the newly identified Nla28 target loci contained at least one gene that was important for starvation-induced development. Most of these loci contained genes predicted to be involved in metabolic or defense-related functions. Using the consensus Nla28 binding sequence, bioinformatics, and expression profiling, 58 additional promoters and 102 genes were tagged as potential Nla28 targets. Among these putative Nla28 targets, functions, such as regulatory, metabolic, and cell envelope biogenesis, were assigned to many genes. IMPORTANCE In bacteria, starvation leads to profound changes in behavior and physiology. Some of these changes have economic and health implications because the starvation response has been linked to the formation of biofilms, virulence, and antibiotic resistance. To better understand how starvation contributes to changes in bacterial physiology and resistance, we identified the putative starvation-induced gene regulatory network associated with Nla28, a transcriptional activator from the bacterium Myxoccocus xanthus . We determined the mechanism by which starvation-responsive genes were activated by Nla28 and showed that several of the genes were important for the formation of a highly resistant cell type. 
    more » « less
  3. Abstract Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) and phospholipid:diacylglycerol acyltransferase 1 (PDAT1) share responsibility for triacylglycerol (TAG) biosynthesis, and their selectivities control TAG fatty acid (FA) compositions. For rational metabolic engineering of seed oils, replacing endogenous TAG biosynthesis with exogenous enzymes containing different substrate FA selectivities is desirable; however, the dgat1-1/pdat1-2 double mutant is pollen lethal. Here, we evaluated the ability of 3 DGAT1s, from phylogenetically diverse plants with distinct TAG assembly processes, to completely replace endogenous TAG biosynthesis in Arabidopsis (Arabidopsis thaliana). We transformed dgat1-1 mutant plants with expression constructs for DGAT1s from Camelina sativa, Physaria fendleri, and castor (Ricinus communis). Transgene expression was properly “contextualized” by using a previously determined minimum necessary expression unit containing the promoter/5′ UTR and first intron of native AtDGAT1; both of these DNA elements are essential for pollen expression. Next, we crossed homozygous lines with a DGAT1/DGAT1/PDAT1/pdat1-2 parent. C. sativa and P. fendleri DGAT1s restored the FA compositions and transcriptional differences of dgat1-1 to near wild-type and rescued the dgat1-1/pdat1-2 pollen lethality. R. communis DGAT1 was active in dgat1-1 seeds but produced unique oil profiles and alterations in the expression of lipid metabolic genes; it also failed to rescue dgat1-1/pdat1-2 lethality. This study confirms that the promoter and first intron of AtDGAT1 can modulate the expression of foreign DGAT1 genes to fit the correct spatiotemporal profile necessary for completely replacing endogenous TAG biosynthesis. Furthermore, it demonstrates an additional layer of unexpected enzyme incompatibility between oilseed lineages, which may complicate bioengineering approaches that seek to replace essential genes with orthologs. 
    more » « less
  4. Abstract BackgroundAccess to biologically available nitrogen is a key constraint on plant growth in both natural and agricultural settings. Variation in tolerance to nitrogen deficit stress and productivity in nitrogen limited conditions exists both within and between plant species. However, our understanding of changes in different phenotypes under long term low nitrogen stress and their impact on important agronomic traits, such as yield, is still limited. ResultsHere we quantified variation in the metabolic, physiological, and morphological responses of a sorghum association panel assembled to represent global genetic diversity to long term, nitrogen deficit stress and the relationship of these responses to grain yield under both conditions. Grain yield exhibits substantial genotype by environment interaction while many other morphological and physiological traits exhibited consistent responses to nitrogen stress across the population. Large scale nontargeted metabolic profiling for a subset of lines in both conditions identified a range of metabolic responses to long term nitrogen deficit stress. Several metabolites were associated with yield under high and low nitrogen conditions. ConclusionOur results highlight that grain yield in sorghum, unlike many morpho-physiological traits, exhibits substantial variability of genotype specific responses to long term low severity nitrogen deficit stress. Metabolic response to long term nitrogen stress shown higher proportion of variability explained by genotype specific responses than did morpho-pysiological traits and several metabolites were correlated with yield. This suggest, that it might be possible to build predictive models using metabolite abundance to estimate which sorghum genotypes will exhibit greater or lesser decreases in yield in response to nitrogen deficit, however further research needs to be done to evaluate such model. 
    more » « less
  5. null (Ed.)
    Growing evidence across organisms points to altered energy metabolism as an adverse outcome of metal oxide nanomaterial toxicity, with a mechanism of toxicity potentially related to the redox chemistry of processes involved in energy production. Despite this evidence, the significance of this mechanism has gone unrecognized in nanotoxicology due to the field’s focus on oxidative stress as a universal—but non-specific—nanotoxicity mechanism. To further explore metabolic impacts, we determined LCO’s effects on these pathways in the model organism Daphnia magna through global gene expression analysis using RNA-Seq and untargeted metabolomics by direct-injection mass spectrometry. Our results show a sublethal 1 mg/L 48 h exposure of D. magna to LCO nanosheets causes significant impacts on metabolic pathways versus untreated controls, while exposure to ions released over 48 hr does not. Specifically, transcriptomic analysis using DAVID indicated significant enrichment (Benjamini-adjusted p ≤0.0.5) in LCO-exposed animals for changes in pathways involved in the cellular response to starvation (25 genes), mitochondrial function (70 genes), ATP-binding (70 genes), oxidative phosphorylation (53 genes), NADH dehydrogenase activity (12 genes), and protein biosynthesis (40 genes). Metabolomic analysis using MetaboAnalyst indicated significant enrichment (gamma-adjusted p < 0.1) for changes in amino acid metabolism (19 metabolites) and starch, sucrose, and galactose metabolism (7 metabolites). Overlap of significantly impacted pathways by RNA-Seq and metabolomics suggests amino acid breakdown and increased sugar import for energy production. Results indicate that LCO-exposed Daphnia are responding to energy starvation by altering metabolic pathways, both at the gene expression and metabolite level. These results support altered energy production as a sensitive nanotoxicity adverse outcome for LCO exposure and suggest negative impacts on energy metabolism as an important avenue for future studies of nanotoxicity, including for other biological systems and for metal oxide nanomaterials more broadly. 
    more » « less