skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Complete replacement of Arabidopsis oil-producing enzymes with heterologous diacylglycerol acyltransferases
Abstract Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) and phospholipid:diacylglycerol acyltransferase 1 (PDAT1) share responsibility for triacylglycerol (TAG) biosynthesis, and their selectivities control TAG fatty acid (FA) compositions. For rational metabolic engineering of seed oils, replacing endogenous TAG biosynthesis with exogenous enzymes containing different substrate FA selectivities is desirable; however, the dgat1-1/pdat1-2 double mutant is pollen lethal. Here, we evaluated the ability of 3 DGAT1s, from phylogenetically diverse plants with distinct TAG assembly processes, to completely replace endogenous TAG biosynthesis in Arabidopsis (Arabidopsis thaliana). We transformed dgat1-1 mutant plants with expression constructs for DGAT1s from Camelina sativa, Physaria fendleri, and castor (Ricinus communis). Transgene expression was properly “contextualized” by using a previously determined minimum necessary expression unit containing the promoter/5′ UTR and first intron of native AtDGAT1; both of these DNA elements are essential for pollen expression. Next, we crossed homozygous lines with a DGAT1/DGAT1/PDAT1/pdat1-2 parent. C. sativa and P. fendleri DGAT1s restored the FA compositions and transcriptional differences of dgat1-1 to near wild-type and rescued the dgat1-1/pdat1-2 pollen lethality. R. communis DGAT1 was active in dgat1-1 seeds but produced unique oil profiles and alterations in the expression of lipid metabolic genes; it also failed to rescue dgat1-1/pdat1-2 lethality. This study confirms that the promoter and first intron of AtDGAT1 can modulate the expression of foreign DGAT1 genes to fit the correct spatiotemporal profile necessary for completely replacing endogenous TAG biosynthesis. Furthermore, it demonstrates an additional layer of unexpected enzyme incompatibility between oilseed lineages, which may complicate bioengineering approaches that seek to replace essential genes with orthologs.  more » « less
Award ID(s):
2242822
PAR ID:
10647285
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Plant Physiology
Volume:
199
Issue:
3
ISSN:
0032-0889
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Accumulation of triacylglycerols (TAGs) is crucial during various stages of plant development. InArabidopsis, two enzymes share overlapping functions to produce TAGs, namely acyl‐CoA:diacylglycerol acyltransferase 1 (DGAT1) and phospholipid:diacylglycerol acyltransferase 1 (PDAT1). Loss of function of both genes in adgat1‐1/pdat1‐2double mutant is gametophyte lethal. However, the key regulatory elements controlling tissue‐specific expression of either gene has not yet been identified.We transformed adgat1‐1/dgat1‐1//PDAT1/pdat1‐2parent with transgenic constructs containing theArabidopsis DGAT1promoter fused to theAtDGAT1open reading frame either with or without the first intron.Triple homozygous plants were obtained, however, in the absence of theDGAT1first intron anthers fail to fill with pollen, seed yield isc. 10% of wild‐type, seed oil content remains reduced (similar todgat1‐1/dgat1‐1), and non‐Mendelian segregation of thePDAT1/pdat1‐2locus occurs. Whereas plants expressing theAtDGAT1pro:AtDGAT1transgene containing the first intron mostly recover phenotypes to wild‐type.This study establishes that a combination of the promoter and first intron ofAtDGAT1provides the proper context for temporal and tissue‐specific expression ofAtDGAT1in pollen. Furthermore, we discuss possible mechanisms of intron mediated regulation and how regulatory elements can be used as genetic tools to functionally replace TAG biosynthetic enzymes inArabidopsis. 
    more » « less
  2. Abstract Exine, the sporopollenin-based outer layer of the pollen wall, forms through an unusual mechanism involving interactions between two anther cell types: developing pollen and tapetum. How sporopollenin precursors and other components required for exine formation are delivered from tapetum to pollen and assemble on the pollen surface is still largely unclear. Here, we characterized an Arabidopsis (Arabidopsis thaliana) mutant, thin exine2 (tex2), which develops pollen with abnormally thin exine. The TEX2 gene (also known as REPRESSOR OF CYTOKININ DEFICIENCY1 (ROCK1)) encodes a putative nucleotide–sugar transporter localized to the endoplasmic reticulum. Tapetal expression of TEX2 is sufficient for proper exine development. Loss of TEX2 leads to the formation of abnormal primexine, lack of primary exine elements, and subsequent failure of sporopollenin to correctly assemble into exine structures. Using immunohistochemistry, we investigated the carbohydrate composition of the tex2 primexine and found it accumulates increased amounts of arabinogalactans. Tapetum in tex2 accumulates prominent metabolic inclusions which depend on the sporopollenin polyketide biosynthesis and transport and likely correspond to a sporopollenin-like material. Even though such inclusions have not been previously reported, we show mutations in one of the known sporopollenin biosynthesis genes, LAP5/PKSB, but not in its paralog LAP6/PKSA, also lead to accumulation of similar inclusions, suggesting separate roles for the two paralogs. Finally, we show tex2 tapetal inclusions, as well as synthetic lethality in the double mutants of TEX2 and other exine genes, could be used as reporters when investigating genetic relationships between genes involved in exine formation. 
    more » « less
  3. The accumulation of triacylglycerol (TAG) in vegetative tissues is necessary to adapt to changing temperatures. It has been hypothesized that TAG accumulation is required as a storage location for maladaptive membrane lipids. The TAG acyltransferase family has five members (DIACYLGLYCEROL ACYLTRANSFERSE1/2/3 and PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1/2), and their individual roles during temperature challenges have either been described conflictingly or not at all. Therefore, we used Arabidopsis (Arabidopsis thaliana) loss of function mutants in each acyltransferase to investigate the effects of temperature challenge on TAG accumulation, plasma membrane integrity, and temperature tolerance. All mutants were tested under one high- and two low-temperature regimens, during which we quantified lipids, assessed temperature sensitivity, and measured plasma membrane electrolyte leakage. Our findings revealed reduced effectiveness in TAG production during at least one temperature regimen for all acyltransferase mutants compared to the wild type, resolved conflicting roles of pdat1 and dgat1 by demonstrating their distinct temperature-specific actions, and uncovered that plasma membrane integrity and TAG accumulation do not always coincide, suggesting a multifaceted role of TAG beyond its conventional lipid reservoir function during temperature stress. 
    more » « less
  4. SUMMARY Bioengineering efforts to increase oil in non‐storage vegetative tissues, which constitute the majority of plant biomass, are promising sustainable sources of renewable fuels and feedstocks. While plants typically do not accumulate significant amounts of triacylglycerol (TAG) in vegetative tissues, we report here that the expression of a plastid‐localized phospholipase A1 protein, DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1), led to a substantial increase in leaf TAG in Arabidopsis. Using an inducible system to control DAD1 expression circumvented growth penalties associated with overexpressing DAD1 and resulted in a rapid burst of TAG within several hours. The increase of TAG was accompanied by the formation of oil bodies in the leaves, petioles, and stems, but not in the roots. Lipid analysis indicated that the increase in TAG was negatively correlated with plastidial galactolipid concentration. The fatty acid (FA) composition of TAG predominantly consisted of 18:3. Expression of DAD1 in thefad3fad7fad8mutant, devoid of 18:3, resulted in comparable TAG accumulation with 18:2 as the major FA constituent, reflecting the flexiblein vivosubstrate use of DAD1. The transient expression of either Arabidopsis DAD1 orNicotiana benthamianaDAD1 (NbDAD1) inN. benthamianaleaves stimulated the accumulation of TAG. Similarly, transgenic soybeans expressing Arabidopsis DAD1 exhibited an accumulation of TAG in the leaves, showcasing the biotechnological potential of this technology. In summary, inducible expression of a plastidial lipase resulted in enhanced oil production in vegetative tissues, extending our understanding of lipid remodeling mediated by DAD1 and offering a valuable tool for metabolic engineering. 
    more » « less
  5. Abstract Plant lipids represent a fascinating field of scientific study, in part due to a stark dichotomy in the limited fatty acid (FA) composition of cellular membrane lipids vs the huge diversity of FAs that can accumulate in triacylglycerols (TAGs), the main component of seed storage oils. With few exceptions, the strict chemical, structural, and biophysical roles imposed on membrane lipids since the dawn of life have constrained their FA composition to predominantly lengths of 16–18 carbons and containing 0–3 methylene-interrupted carbon-carbon double bonds in cis-configuration. However, over 450 “unusual” FA structures can be found in seed oils of different plants, and we are just beginning to understand the metabolic mechanisms required to produce and maintain this dichotomy. Here we review the current state of plant lipid research, specifically addressing the knowledge gaps in membrane and storage lipid synthesis from 3 angles: pathway fluxes including newly discovered TAG remodeling, key acyltransferase substrate selectivities, and the possible roles of “metabolons.” 
    more » « less