skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Telechelic Dithiol Copolymers as Tunable Building Blocks for Synthesizing Multiblock Materials
ABSTRACT A new strategy is reported to accessα,ω‐dithiol polymer building blocks with tunable molecular weights and compositions for the preparation of random multiblock copolymers based on styrenic, acrylic, and siloxane repeat units. This facile synthetic approach provides access to dithiols through a two‐step process: (1) an initial copolymerization of vinyl monomers with ethyl lipoate followed by (2) disulfide bond reduction, producing dithiol terminated polymer products. Thiol‐terminated polymers are easily prepared over a wide range of molecular weights (2–32 kDa) by simply controlling the feed ratio of vinyl monomer to ethyl lipoate. Mixtures of these linear dithiol‐terminated building blocks were repolymerized via oxidative coupling to create random multiblock copolymers with high molecular weights (68–95 kDa) and controlled degradability. In summary, this approach for preparing and recombining telechelic dithiol polymers creates opportunities to manipulate the mechanical and physical properties of multiblock copolymers using a synthetically simple and versatile platform.  more » « less
Award ID(s):
1933487
PAR ID:
10592663
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
63
Issue:
3
ISSN:
2642-4150
Page Range / eLocation ID:
759 to 765
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A versatile synthetic platform is reported that affords high molecular weight graft copolymers containing polydimethylsiloxane (PDMS) backbones and vinyl‐based polymer side chains with excellent control over molecular weight and grafting density. The synthetic approach leverages thiol‐ene click chemistry to attach an atom‐transfer radical polymerization (ATRP) initiator to a variety of commercially available poly(dimethylsiloxane‐co‐methylvinylsiloxane) backbones (PDMS‐co‐PVMS), followed by controlled radical polymerization with a wide scope of vinyl monomers. Selective degradation of the siloxane backbone with tetrabutylammonium fluoride confirmed the controlled nature of side‐chain growth via ATRP, yielding targeted side‐chain lengths for copolymers containing up to 50% grafting density and overall molecular weights in excess of 1 MDa. In addition, by using a mixture of thiols, grafting density and functionality can be further controlled by tuning initiator loading along the backbone. For example, solid‐state fluorescence of the graft copolymers was achieved by incorporating a thiol‐containing fluorophore along the siloxane backbone during the thiol‐ene click reaction. This simple synthetic platform provides facile control over the properties of a wide variety of grafted copolymers containing flexible PDMS backbones and vinyl polymer side chains. 
    more » « less
  2. We investigate a new series of precise ion-containing polyamide sulfonates (PAS x Li), where a short polar block precisely alternates with a non-polar block of aliphatic carbons ( x = 4, 5, 10, or 16) to form an alternating (AB) n multiblock architecture. The polar block includes a lithiated phenyl sulfonate in the polymer backbone. These PAS x Li polymers were synthesized via polycondensation of diaminobenzenesulfonic acid and alkyl diacids (or alkyl diacyl chlorides) with x -carbons, containing amide bonds at the block linkages. The para - and meta -substituted diaminobenzene monomers led to polymer analogs denoted p PAS x Li and m PAS x Li, respectively. When x ≤ 10, the para -substituted diamine monomer yields multiblock copolymers of a higher degree of polymerization than the meta -substituted isomer, due to the greater electron-withdrawing effect of the meta -substituted monomer. The PAS x Li polymers exhibit excellent thermal stability with less than 5% mass loss at 300 °C and the glass transition temperatures ( T g ) decrease with increasing hydrocarbon block length ( x ). Using the random phase approximation, the Flory–Huggins interaction parameter ( χ ) is determined for p PAS10Li, and χ (260 °C) ∼ 2.92 reveals high incompatibility between the polar ionic and non-polar hydrocarbon blocks. The polymer with the longest hydrocarbon block, p PAS16Li, is semicrystalline and forms well-defined nanoscale layers with a spacing of ∼2.7 nm. Relative to previously studied polyester multiblock copolymers, the amide groups and aromatic rings permit the nanoscale layers to persist up to 250 °C and thus increase the stability range for ordered morphologies in precise ion-containing multiblock copolymers. 
    more » « less
  3. ABSTRACT The introduction of degradable units into the backbone of commodity vinyl polymers represents a major opportunity to address the societal challenge of plastic waste and polymer recycling. Previously, we reported the facile copolymerization ofα‐lipoic acid derivatives containing 1,2‐dithiolane rings with vinyl monomers leading to the incorporation of degradable S–S disulfide bonds along the backbone at relatively high dithiolane monomer feed ratios. To further enhance the recyclability of these systems, here we describe a facile and user‐friendly strategy for backbone degradation at significantly lower dithiolane loading levels through cleavage of both SS and SC backbone units. Copolymers ofn‐butyl acrylate (nBA) or styrene (St) with small amounts of eitherα‐lipoic acid (LA) or ethyl lipoate (ELp) dissolved in DMF were observed to undergo efficient degradation when heated at 100°C under air. For example, at only 5 mol% ELp, a high molecular weight poly(ELp‐co‐nBA) (Mn = 62 kg mol−1) degraded to low molecular weight oligomers (Mn = 3.2 kg mol−1) by simple heating in DMF. In contrast, extended heating of either poly(nBA) or poly(St) homopolymers under the same conditions did not lead to any change in molecular weight or cleavage of the C–C backbone. This novel approach allows for the effective degradation of vinyl‐based polymers with negligible impact on properties and performance due to the low levels of dithiolane incorporation. 
    more » « less
  4. Telechelic polymers, polymers with two reactive end-groups, are sought after for their role in synthesizing macromolecules with complex structures such as multiblock copolymers and graft polymers. Many strategies for the synthesis of telechelic polymers from vinyl monomers using controlled radical polymerizations and anionic polymerizations exist. However, polyolefins—which account for the major fraction of polymer production—are not easily synthesized with two reactive end-groups. This difficulty is related to the sensitivity of olefin polymerization catalysts and their propensity for intramolecular chain transfer reactions. As a result, the most common strategies to access telechelic polyethylene and polypropylene (the two major polyolefins) do not rely on the insertion polymerization of ethylene nor propylene but rather on the polymerization of dienes or cyclic olefins. Nonetheless, recent advances in insertion polymerization and post-polymerization functionalization have resulted in the emergence of novel synthetic methods to access telechelic polyolefins. We here present a comprehensive review of all of these strategies to synthesize telechelic polyolefins. 
    more » « less
  5. Abstract In typical cyclic polymer synthesis via ring‐closure, chain growth and cyclization events are competing with each other, thus affording cyclic polymers with uncontrolled molecular weight or ring size and high dispersity. Here we uncover a mechanism by which Lewis pair polymerization (LPP) operates on polar vinyl monomers that allows the control of where and when cyclization takes place, thereby achieving spatial and temporal control to afford precision cyclic vinyl polymers or block copolymers with predictable molecular weight and low dispersity (≈1.03). A combined experimental and theoretical study demonstrates that cyclization occurs only after all monomers have been consumed (when) via conjugate addition of the propagating chain end to the specific site of the initiating chain end (where), allowing the cyclic polymer formation steps to be regulated and executed with precision in space and time. 
    more » « less