Animal and plant microbial pathogens deploy effector proteins and virulence factors to manipulate host cell innate immunity, often using unconventional secretion routes that are poorly understood. Transfer RNA (tRNA) anticodon modifications occur across taxa, but few biological functions are known. Here, in the devastating blast fungus Magnaporthe oryzae, we find that unconventional protein secretion in living host rice cells depends on tRNA modification and codon usage. Using gene deletions, mass spectrometry and live-cell imaging, we characterized the M. oryzae Uba4-Urm1 sulfur relay system mediating tRNA anticodon wobble uridine 2-thiolation (s2U34), a conserved modification required for efficient decoding of AA-ending cognate codons. In M. oryzae, cytoplasmic effectors like Pwl2 and AVR-Pita are translocated into host cells via an unconventional secretion route; apoplastic effectors like Bas4 are secreted by the conventional ER-Golgi pathway. Loss of U34 thiolation abolished PWL2 and AVR-PITA (but not BAS4) mRNA translation in host cells. Paromomycin treatment, which increases near-cognate tRNA acceptance, restored Pwl2 and AVR-Pita production in U34 thiolation-deficient mutant strains. Synonymous AA- to ¬¬AG-ending codon changes remediated PWL2 mRNA translation in uba4; in UBA4+, expressing recoded PWL2 resulted in Pwl2 super-secretion that destabilized the microbe-host cell interface. Thus, wobble U34 tRNA thiolation and codon usage tune pathogen unconventional protein secretion in host cells.
more »
« less
This content will become publicly available on March 31, 2026
A phytoalexin dismantles bacterial type III injectisome
Many Gram-negative bacterial pathogens rely on the secretion system to inject effectors into their host cells, thereby suppressing host immunity and subsequently leading to diseases. In a recent Science paper, Miao et al. identified a plant secondary metabolite that dismantles type III injectisome by targeting the conserved HrcC protein within the secretion apparatus.
more »
« less
- Award ID(s):
- 2207677
- PAR ID:
- 10592788
- Publisher / Repository:
- Nature Publishing group
- Date Published:
- Journal Name:
- Cell Research
- ISSN:
- 1748-7838
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Effector secretion by different routes mediates the molecular interplay between host plant and pathogen, but mechanistic details in eukaryotes are sparse. This may limit the discovery of new effectors that could be utilized for improving host plant disease resistance. In fungi and oomycetes, apoplastic effectors are secreted via the conventional endoplasmic reticulum (ER)-Golgi pathway, while cytoplasmic effectors are packaged into vesicles that bypass Golgi in an unconventional protein secretion (UPS) pathway. In Magnaporthe oryzae, the Golgi bypass UPS pathway incorporates components of the exocyst complex and a t-SNARE, presumably to fuse Golgi bypass vesicles to the fungal plasma membrane. Upstream, cytoplasmic effector mRNA translation in M. oryzae requires the efficient decoding of AA-ending codons. This involves the modification of wobble uridines in the anticodon loop of cognate tRNAs and fine-tunes cytoplasmic effector translation and secretion rates to maintain biotrophic interfacial complex integrity and permit host infection. Thus, plant-fungal interface integrity is intimately tied to effector codon usage, which is a surprising constraint on pathogenicity. Here, we discuss these findings within the context of fungal and oomycete effector discovery, delivery, and function in host cells. We show how cracking the codon code for unconventional cytoplasmic effector secretion in M. oryzae has revealed AA-ending codon usage bias in cytoplasmic effector mRNAs across kingdoms, including within the RxLR-dEER motif-encoding sequence of a bona fide Phytophthora infestans cytoplasmic effector, suggesting its subjection to translational speed control. By focusing on recent developments in understanding unconventional effector secretion, we draw attention to this important but understudied area of host-pathogen interactions. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .more » « less
-
Gralnick, Jeffrey A (Ed.)ABSTRACT In the central plains of North America, the beetle family Silphidae comprised two subfamilies, Silphinae and Nicrophorinae, differentiated by reproductive behaviors. Silphinae, known as carrion beetles, feed on carrion and fly larvae and produce free-living larvae that receive no parental care. Adult Nicrophorinae, known as burying beetles, prepare a vertebrate carcass into a brood ball and provide biparental care to their offspring. Preparation of a brood ball involves coating the carcass in antimicrobial oral and anal secretions. These secretions contain a community of microbes, referred to as the secretion microbiome, which inhibit carcass microbe succession, preventing normal decomposition. Here, the secretion microbiomes of five species of Nicrophorinae and two species of Silphinae, both sampled from Oklahoma, with additional Nicrophorinae from Nebraska, were characterized using culture-independent analyses to understand and decipher factors shaping diversity and community structure. We identify the core secretion microbiome across Silphidae and show that, while the host subfamily, secretion type, and collection locality had no significant effect on the bacterial community alpha diversity, these factors significantly influenced bacterial community structure. Global and local tests of phylogenetic associations identified 14 genera with phylogenetic signals to the host subfamily and species. Description of the bacterial communities present in silphid secretions furthers our understanding of how these beetles interact with microbes for carcass nutrient processing. Future culture-dependent studies from silphid secretions may identify novel antimicrobials and nontoxic compounds that can act as meat preservatives or sources for antimicrobials. IMPORTANCEThe manuscript explores the secretion bacterial community of carrion and burying beetles of the central plains of North America. A core secretion microbiome of 11 genera is identified. The host subfamily, secretion type, and collection locality significantly affects the secretion microbiome. Future culture-dependent studies from silphid secretions may identify novel antimicrobials and nontoxic compounds that can act as meat preservatives or sources for antimicrobials.more » « less
-
Lal, Rup (Ed.)ABSTRACT Microbial metabolism and trophic interactions between microbes give rise to complex multispecies communities in microbe-host systems. Bacteroides thetaiotaomicron ( B. theta ) is a human gut symbiont thought to play an important role in maintaining host health. Untargeted nuclear magnetic resonance metabolomics revealed B. theta secretes specific organic acids and amino acids in defined minimal medium. Physiological concentrations of acetate and formate found in the human intestinal tract were shown to cause dose-dependent changes in secretion of metabolites known to play roles in host nutrition and pathogenesis. While secretion fluxes varied, biomass yield was unchanged, suggesting feedback inhibition does not affect metabolic bioenergetics but instead redirects carbon and energy to CO 2 and H 2 . Flux balance analysis modeling showed increased flux through CO 2 -producing reactions under glucose-limiting growth conditions. The metabolic dynamics observed for B. theta , a keystone symbiont organism, underscores the need for metabolic modeling to complement genomic predictions of microbial metabolism to infer mechanisms of microbe-microbe and microbe-host interactions. IMPORTANCE Bacteroides is a highly abundant taxon in the human gut, and Bacteroides thetaiotaomicron ( B. theta ) is a ubiquitous human symbiont that colonizes the host early in development and persists throughout its life span. The phenotypic plasticity of keystone organisms such as B. theta is important to understand in order to predict phenotype(s) and metabolic interactions under changing nutrient conditions such as those that occur in complex gut communities. Our study shows B. theta prioritizes energy conservation and suppresses secretion of “overflow metabolites” such as organic acids and amino acids when concentrations of acetate are high. Secreted metabolites, especially amino acids, can be a source of nutrients or signals for the host or other microbes in the community. Our study suggests that when metabolically stressed by acetate, B. theta stops sharing with its ecological partners.more » « less
-
Abstract BackgroundSilk proteins have emerged as versatile biomaterials with unique chemical and physical properties, making them appealing for various applications. Among them, spider silk, known for its exceptional mechanical strength, has attracted considerable attention. Recombinant production of spider silk represents the most promising route towards its scaled production; however, challenges persist within the upstream optimization of host organisms, including toxicity and low yields. The high cost of downstream cell lysis and protein purification is an additional barrier preventing the widespread production and use of spider silk proteins. Gram-positive bacteria represent an attractive, but underexplored, microbial chassis that may enable a reduction in the cost and difficulty of recombinant silk production through attributes that include, superior secretory capabilities, frequent GRAS status, and previously established use in industry. ResultsIn this study, we explore the potential of gram-positive hosts by engineering the first production and secretion of recombinant spider silk in theBacillusgenus. Using an industrially relevantB. megateriumhost, it was found that the Sec secretion pathway enables secretory production of silk, however, the choice of signal sequence plays a vital role in successful secretion. Attempts at increasing secreted titers revealed that multiple translation initiation sites in tandem do not significantly impact silk production levels, contrary to previous findings for other gram-positive hosts and recombinant proteins. Notwithstanding, targeted amino acid supplementation in minimal media was found to increase production by 135% relative to both rich media and unaltered minimal media, yielding secretory titers of approximately 100 mg/L in flask cultures. ConclusionIt is hypothesized that the supplementation strategy addressed metabolic bottlenecks, specifically depletion of ATP and NADPH within the central metabolism, that were previously observed for anE. colihost producing the same recombinant silk construct. Furthermore, this study supports the hypothesis that secretion mitigates the toxicity of the produced silk protein on the host organism and enhances host performance in glucose-based minimal media. While promising, future research is warranted to understand metabolic changes more precisely in theBacillushost system in response to silk production, optimize signal sequences and promoter strengths, investigate the mechanisms behind the effect of tandem translation initiation sites, and evaluate the performance of this system within a bioreactor.more » « less
An official website of the United States government
