skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 21, 2026

Title: Streaming quantum state purification
Quantum state purification is the task of recovering a nearly pure copy of an unknown pure quantum state using multiple noisy copies of the state. This basic task has applications to quantum communication over noisy channels and quantum computation with imperfect devices, but has only been studied previously for the case of qubits. We derive an efficient purification procedure based on the swap test for qudits of any dimension, starting with any initial error parameter. Treating the initial error parameter and the dimension as constants, we show that our procedure has sample complexity asymptotically optimal in the final error parameter. Our protocol has a simple recursive structure that can be applied when the states are provided one at a time in a streaming fashion, requiring only a small quantum memory to implement.  more » « less
Award ID(s):
2120757
PAR ID:
10592848
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Quantum
Date Published:
Journal Name:
Quantum
Volume:
9
ISSN:
2521-327X
Page Range / eLocation ID:
1603
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Detection of very weak forces and precise measurement of time are two of the many applications of quantum metrology to science and technology. To sense an unknown physical parameter, one prepares an initial state of a probe system, allows the probe to evolve as governed by a Hamiltonian H for some time t, and then measures the probe. If H is known, we can estimate t by this method; if t is known, we can estimate classical parameters on which H depends. The accuracy of a quantum sensor can be limited by either intrinsic quantum noise or by noise arising from the interactions of the probe with its environment. In this work, we introduce and study a fundamental trade-off, which relates the amount by which noise reduces the accuracy of a quantum clock to the amount of information about the energy of the clock that leaks to the environment. Specifically, we consider an idealized scenario in which a party Alice prepares an initial pure state of the clock, allows the clock to evolve for a time that is not precisely known, and then transmits the clock through a noisy channel to a party Bob. Meanwhile, the environment (Eve) receives any information about the clock that is lost during transmission. We prove that Bob’s loss of quantum Fisher information about the elapsed time is equal to Eve’s gain of quantum Fisher information about a complementary energy parameter. We also prove a similar, but more general, trade-off that applies when Bob and Eve wish to estimate the values of parameters associated with two noncommuting observables. We derive the necessary and sufficient conditions for the accuracy of the clock to be unaffected by the noise, which form a subset of the Knill-Laflamme error-correction conditions. A state and its local time-evolution direction, if they satisfy these conditions, are said to form a metrological code. We provide a scheme to construct metrological codes in the stabilizer formalism. We show that there are metrological codes that cannot be written as a quantum error-correcting code with similar distance in which the Hamiltonian acts as a logical operator, potentially offering new schemes for constructing states that do not lose any sensitivity upon application of a noisy channel. We discuss applications of the trade-off relation to sensing using a quantum many-body probe subject to erasure or amplitude-damping noise. 
    more » « less
  2. We define a map from an arbitrary quantum circuit to a local Hamiltonian whose ground state encodes the quantum computation. All previous maps relied on the Feynman-Kitaev construction, which introduces an ancillary ‘clock register’ to track the computational steps. Our construction, on the other hand, relies on injective tensor networks with associated parent Hamiltonians, avoiding the introduction of a clock register. This comes at the cost of the ground state containing only a noisy version of the quantum computation, with independent stochastic noise. We can remedy this—making our construction robust—by using quantum fault tolerance. In addition to the stochastic noise, we show that any state with energy density exponentially small in the circuit depth encodes a noisy version of the quantum computation with adversarial noise. We also show that any ‘combinatorial state’ with energy density polynomially small in depth encodes the quantum computation with adversarial noise. This serves as evidence that any state with energy density polynomially small in depth has a similar property. As an application, we show that contracting injective tensor networks to additive error is BQP-hard. We also discuss the implication of our construction to the quantum PCP conjecture, combining with an observation that QMA verification can be done in logarithmic depth. 
    more » « less
  3. Many-body open quantum systems balance internal dynamics against decoherence from interactions with an environment. Here, we explore this balance via random quantum circuits implemented on a trapped ion quantum computer, where the system evolution is represented by unitary gates with interspersed projective measurements. As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerent threshold. We probe the "pure" phase, where the system is rapidly projected to a deterministic state conditioned on the measurement outcomes, and the "mixed" or "coding" phase, where the initial state becomes partially encoded into a quantum error correcting codespace. We find convincing evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition clearly emerge. 
    more » « less
  4. Abstract The task of learning a quantum circuit to prepare a given mixed state is a fundamental quantum subroutine. We present a variational quantum algorithm (VQA) to learn mixed states which is suitable for near-term hardware. Our algorithm represents a generalization of previous VQAs that aimed at learning preparation circuits for pure states. We consider two different ansätze for compiling the target state; the first is based on learning a purification of the state and the second on representing it as a convex combination of pure states. In both cases, the resources required to store and manipulate the compiled state grow with the rank of the approximation. Thus, by learning a lower rank approximation of the target state, our algorithm provides a means of compressing a state for more efficient processing. As a byproduct of our algorithm, one effectively learns the principal components of the target state, and hence our algorithm further provides a new method for principal component analysis. We investigate the efficacy of our algorithm through extensive numerical implementations, showing that typical random states and thermal states of many body systems may be learnt this way. Additionally, we demonstrate on quantum hardware how our algorithm can be used to study hardware noise-induced states. 
    more » « less
  5. Understanding the computational power of noisy intermediate-scale quantum (NISQ) devices is of both fundamental and practical importance to quantum information science. Here, we address the question of whether error-uncorrected noisy quantum computers can provide computational advantage over classical computers. Specifically, we study noisy random circuit sampling in one dimension (or 1D noisy RCS) as a simple model for exploring the effects of noise on the computational power of a noisy quantum device. In particular, we simulate the real-time dynamics of 1D noisy random quantum circuits via matrix product operators (MPOs) and characterize the computational power of the 1D noisy quantum system by using a metric we call MPO entanglement entropy. The latter metric is chosen because it determines the cost of classical MPO simulation. We numerically demonstrate that for the two-qubit gate error rates we considered, there exists a characteristic system size above which adding more qubits does not bring about an exponential growth of the cost of classical MPO simulation of 1D noisy systems. Specifically, we show that above the characteristic system size, there is an optimal circuit depth, independent of the system size, where the MPO entanglement entropy is maximized. Most importantly, the maximum achievable MPO entanglement entropy is bounded by a constant that depends only on the gate error rate, not on the system size. We also provide a heuristic analysis to get the scaling of the maximum achievable MPO entanglement entropy as a function of the gate error rate. The obtained scaling suggests that although the cost of MPO simulation does not increase exponentially in the system size above a certain characteristic system size, it does increase exponentially as the gate error rate decreases, possibly making classical simulation practically not feasible even with state-of-the-art supercomputers. 
    more » « less