<sc>A</sc>bstract We introduce a simple synthetic strategy to selectively degrade bottlebrush networks derived from well‐defined poly(4‐methylcaprolactone) (P4MCL) bottlebrush polymers. Functionalization of the hydroxyl groups present at the terminal ends of P4MCL side chains withα‐lipoic acid resulted in bottlebrush polymers having a range of molecular weights (Mn = 45–2200 kg mol−1) and a tunable number of reactive dithiolane chain ends. These functionalized chain ends act as efficient crosslinkers due to radical ring‐opening of the dithiolane rings under UV light. The resulting redox‐active disulfide crosslinks enable mild electrochemical or chemical degradation of the SS crosslinks to regenerate the starting bottlebrush polymer. P4MCL side chains and the disulfides can be degraded simultaneously using harsher reducing conditions. This combination of bottlebrush architecture with facile disulfide crosslinking presents a versatile platform for preparing highly tunable elastomers that undergo controlled degradation under mild conditions.
more »
« less
Enhanced Degradation of Vinyl Copolymers Based on Lipoic Acid
ABSTRACT The introduction of degradable units into the backbone of commodity vinyl polymers represents a major opportunity to address the societal challenge of plastic waste and polymer recycling. Previously, we reported the facile copolymerization ofα‐lipoic acid derivatives containing 1,2‐dithiolane rings with vinyl monomers leading to the incorporation of degradable S–S disulfide bonds along the backbone at relatively high dithiolane monomer feed ratios. To further enhance the recyclability of these systems, here we describe a facile and user‐friendly strategy for backbone degradation at significantly lower dithiolane loading levels through cleavage of both SS and SC backbone units. Copolymers ofn‐butyl acrylate (nBA) or styrene (St) with small amounts of eitherα‐lipoic acid (LA) or ethyl lipoate (ELp) dissolved in DMF were observed to undergo efficient degradation when heated at 100°C under air. For example, at only 5 mol% ELp, a high molecular weight poly(ELp‐co‐nBA) (Mn = 62 kg mol−1) degraded to low molecular weight oligomers (Mn = 3.2 kg mol−1) by simple heating in DMF. In contrast, extended heating of either poly(nBA) or poly(St) homopolymers under the same conditions did not lead to any change in molecular weight or cleavage of the C–C backbone. This novel approach allows for the effective degradation of vinyl‐based polymers with negligible impact on properties and performance due to the low levels of dithiolane incorporation.
more »
« less
- Award ID(s):
- 1933487
- PAR ID:
- 10592882
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Polymer Science
- Volume:
- 63
- Issue:
- 6
- ISSN:
- 2642-4150
- Page Range / eLocation ID:
- 1345 to 1351
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Leveraging electrochemistry to degrade robust polymeric materials has the potential to impact society's growing issue of plastic waste. Herein, we develop an electrocatalytic oxidative degradation of polyethers and poly(vinyl ethers) via electrochemically mediated hydrogen atom transfer (HAT) followed by oxidative polymer degradation promoted by molecular oxygen. We investigated the selectivity and efficiency of this method, finding our conditions to be highly selective for polymers with hydridic, electron‐rich C−H bonds. We leveraged this reactivity to degrade polyethers and poly(vinyl ethers) in the presence of polymethacrylates and polyacrylates with complete selectivity. Furthermore, this method made polyacrylates degradable by incorporation of ether units into the polymer backbone. We quantified degradation products, identifying up to 36 mol % of defined oxidation products, including acetic acid, formic acid, and acetaldehyde, and we extended this method to degrade a polyether‐based polyurethane in a green solvent. This work demonstrates a facile, electrochemically‐driven route to degrade polymers containing ether functionalities.more » « less
-
Abstract A versatile synthetic platform is reported that affords high molecular weight graft copolymers containing polydimethylsiloxane (PDMS) backbones and vinyl‐based polymer side chains with excellent control over molecular weight and grafting density. The synthetic approach leverages thiol‐ene click chemistry to attach an atom‐transfer radical polymerization (ATRP) initiator to a variety of commercially available poly(dimethylsiloxane‐co‐methylvinylsiloxane) backbones (PDMS‐co‐PVMS), followed by controlled radical polymerization with a wide scope of vinyl monomers. Selective degradation of the siloxane backbone with tetrabutylammonium fluoride confirmed the controlled nature of side‐chain growth via ATRP, yielding targeted side‐chain lengths for copolymers containing up to 50% grafting density and overall molecular weights in excess of 1 MDa. In addition, by using a mixture of thiols, grafting density and functionality can be further controlled by tuning initiator loading along the backbone. For example, solid‐state fluorescence of the graft copolymers was achieved by incorporating a thiol‐containing fluorophore along the siloxane backbone during the thiol‐ene click reaction. This simple synthetic platform provides facile control over the properties of a wide variety of grafted copolymers containing flexible PDMS backbones and vinyl polymer side chains.more » « less
-
Biomass-derived polymer materials are emerging as sustainable and low-carbon footprint alternatives to the current petroleum-based commodity plastics. In the past decade, the ring-opening metathesis polymerization (ROMP) technique has been widely used for the polymerization of cyclic olefin monomers derived from biorenewable resources, giving rise to a diverse set of biobased polymer materials. However, most synthetic biobased polymers made by ROMP are nondegradable because of their all-carbon backbones. Herein, we present a modular synthetic strategy to acid-degradable poly(enol ether)s via ring-opening metathesis copolymerization of biorenewable oxanorbornenes and 3,4-dihydropyran (DHP). 1H NMR analysis reveals that the percentage of DHP units in the resulting copolymers gradually increases as the feed ratio of DHP to oxanorbornene increases. The composition of the copolymers plays a pivotal role in governing their thermal properties. Thermogravimetric analysis shows that an increasing percentage of DHP results in a decrease in the decomposition temperatures, suggesting that the incorporation of enol ether groups in the polymer backbone reduces the thermal stability of the copolymers. Moreover, a wide range of glass transition temperatures (16–165 °C) can be achieved by tuning the copolymer composition and the oxanorbornene structure. Critically, all of the poly(enol ether)s developed in this study are degradable under mildly acidic conditions. A higher incorporation of DHP in the copolymer leads to enhanced degradability, as evidenced by smaller final degradation products. Altogether, this study provides a facile approach for synthesizing biorenewable and degradable polymer materials with highly tunable thermal properties desired for their potential industrial applications.more » « less
-
Biomass-derived isosorbide (IS) was converted into a mono-glycal ( i.e. vinyl ether) derivative (Gly-IS) to investigate its efficacy for cationic polymerization. While homopolymerization was unsuccessful, likely due to the steric demand near the propagating cationic site, copolymerization with isobutyl vinyl ether (IBVE) revealed great promise for the use of Gly-IS as a rigid and sustainable comonomer. Traditional cationic methods yielded copolymers with IBVE, but the incorporation of Gly-IS was hindered by the propensity for Lewis acids to catalyze a ring-opening reaction driven by aromatization to a chiral furan analog. This reaction was discovered to be significantly sequestered through the use of metal-free photoinitiated cationic copolymerization methods that are void of Lewis acid reagents, yielding a much higher incorporation of Gly-IS (up to 42 mol%) into the copolymer. The rigidity and chirality of the Gly-IS repeating unit was found to increase the glass transition temperature ( T g ) up to 25 °C with 33 mol% incorporation at modest molar mass (10.4 kg mol −1 ) while all copolymers displayed thermal stability up to 320 °C under inert atmosphere. Due to its chiral structure, specific optical rotation [α] of the copolymer also increased with incorporation of Gly-IS. Therefore, Gly-IS presents opportunity as a sustainable and value-added comonomer to modulate the properties of common poly(vinyl ether) systems.more » « less
An official website of the United States government

