We derive an exact solution for the steady state of a setup where two -coupled -qubit spin chains (with possibly nonuniform couplings) are subject to boundary Rabi drives and common boundary loss generated by a waveguide (either bidirectional or unidirectional). For a wide range of parameters, this system has a pure entangled steady state, providing a means for stabilizing remote multiqubit entanglement without the use of squeezed light. Our solution also provides insights into a single boundary-driven dissipative spin chain that maps to an interacting fermionic model. The nonequilibrium steady state exhibits surprising correlation effects, including an emergent pairing of hole excitations that arises from dynamically constrained hopping. Our system could be implemented in a number of experimental platforms, including circuit QED. Published by the American Physical Society2024
more »
« less
Ion-chain sympathetic cooling and gate dynamics
Sympathetic cooling is a technique often employed to mitigate motional heating in trapped-ion quantum computers. However, choosing system parameters such as number of coolants and cooling duty cycle for optimal gate performance requires evaluating trade-offs between motional errors and other slower errors such as qubit dephasing. The optimal parameters depend on cooling power, heating rate, and ion spacing in a particular system. In this study, we aim to analyze best practices for sympathetic cooling of long chains of trapped ions using analytical and computational methods. We use a case study to show that optimal cooling performance is achieved when coolants are placed at the center of the chain and provide a perturbative upper bound on the cooling limit of a mode given a particular set of cooling parameters. In addition, using computational tools, we analyze the trade-off between the number of coolant ions in a chain and the center-of-mass mode heating rate. We also show that cooling as often as possible when running a circuit is optimal when the qubit coherence time is otherwise long. These results provide a roadmap for how to choose sympathetic cooling parameters to maximize circuit performance in trapped-ion quantum computers using long chains of ions. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2120757
- PAR ID:
- 10592923
- Publisher / Repository:
- Physical Review Applied
- Date Published:
- Journal Name:
- Physical Review Applied
- Volume:
- 22
- Issue:
- 4
- ISSN:
- 2331-7019
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Large-scale quantum computers will inevitably need quantum error correction (QEC) to protect information against decoherence. Given that the overhead of such error correction is often formidable, autonomous quantum error correction (AQEC) proposals offer a promising near-term alternative. AQEC schemes work by transforming error states into excitations that can be efficiently removed through engineered dissipation. The recently proposed AQEC scheme by Li , called the Star code, can autonomously correct or suppress all single qubit error channels using two transmons as encoders with a tunable coupler and two lossy resonators as a cooling source. The Star code requires only two-photon interactions and can be realized with linear coupling elements, avoiding experimentally challenging higher-order terms needed in many other AQEC proposals, but needs carefully selected parameters to achieve quadratic improvements in logical states' lifetimes. Here, we theoretically and numerically demonstrate the optimal parameter choices in the Star code. We further discuss adapting the Star code to other planar superconducting circuits, which offers a scalable alternative to single qubits for incorporation in larger quantum computers or error correction codes. Published by the American Physical Society2024more » « less
-
Abstract Parallel operations are important for both near‐term quantum computers and larger‐scale fault‐tolerant machines because they reduce execution time and qubit idling. This study proposes and implements a pairwise‐parallel gate scheme on a trapped‐ion quantum computer. The gates are driven simultaneously on different sets of orthogonal motional modes of a trapped‐ion chain. This work demonstrates the utility of this scheme by creating a Greenberger‐Horne‐Zeilinger (GHZ) state in one step using parallel gates with one overlapping qubit. It also shows its advantage for circuits by implementing a digital quantum simulation of the dynamics of an interacting spin system, the transverse‐field Ising model. This method effectively extends the available gate depth by up to two times with no overhead when no overlapping qubit is involved, apart from additional initial cooling. This scheme can be easily applied to different trapped‐ion qubits and gate schemes, broadly enhancing the capabilities of trapped‐ion quantum computers.more » « less
-
High-coherence qubits, which can store and manipulate quantum states for long times with low error rates, are necessary building blocks for quantum computers. Here we propose a driven superconducting erasure qubit, the Floquet fluxonium molecule, which minimizes bit-flip rates through disjoint support of its qubit states and suppresses phase flips by a novel second-order insensitivity to flux-noise dephasing. We estimate the bit-flip, phase-flip, and erasure rates through numerical simulations, with predicted coherence times of approximately 50 ms in the computational subspace and erasure lifetimes of about . We also present a protocol for performing high-fidelity single-qubit rotation gates via additional flux modulation, on timescales of roughly 500 ns, and propose a scheme for erasure detection and logical readout. Our results demonstrate the utility of drives for building new qubits that can outperform their static counterparts. Published by the American Physical Society2024more » « less
-
Trapped-ion systems are a leading platform for quantum information processing, but they are currently limited to 1D and 2D arrays, which imposes restrictions on both their scalability and their range of applications. Here, we propose a path to overcome this limitation by demonstrating that Penning traps can be used to realize remarkably clean bilayer crystals, wherein hundreds of ions self-organize into two well-defined layers. These bilayer crystals are made possible by the inclusion of an anharmonic trapping potential, which is readily implementable with current technology. We study the normal modes of this system and discover salient differences compared to the modes of single-plane crystals. The bilayer geometry and the unique properties of the normal modes open new opportunities—in particular, in quantum sensing and quantum simulation—that are not straightforward in single-plane crystals. Furthermore, we illustrate that it may be possible to extend the ideas presented here to realize multilayer crystals with more than two layers. Our work increases the dimensionality of trapped-ion systems by efficiently utilizing all three spatial dimensions, and it lays the foundation for a new generation of quantum information processing experiments with multilayer 3D crystals of trapped ions. Published by the American Physical Society2024more » « less
An official website of the United States government

