Abstract Delivering magnetic nanoparticles (MNPs) into mitochondria provides a facile approach to manipulate cell life because mitochondria play essential roles in cell survival and death. Here we report the use of enzyme‐responsive peptide assemblies to deliver MNPs into mitochondria of live cells. The mitochondria‐targeting peptide (Mito‐Flag), as the substrate of enterokinase (ENTK), assembles with MNPs in solution. The MNPs that are encapsulated by Mito‐Flag peptides selectively accumulate to the mitochondria of cancer cells, rather than normal cells. The mitochondrial localization of MNPs reduces the viability of the cancer cells, but hardly affects the survival of the normal cell. This work demonstrates a new and facile strategy to specifically transport MNPs to the mitochondria in cancer cells for exploring the applications of MNPs as the targeted drug for biomedicine and cancer therapy.
more »
« less
This content will become publicly available on January 1, 2026
Production, labeling, and applications of micro- and nanoplastic reference and test materials
The challenges inherent to the extraction of micro- and nanoplastics (MNPs) from the environment and the limited range of commercially available MNPs have prompted an increasing number of researchers to generate in-house reference and test MNPs.
more »
« less
- Award ID(s):
- 2145532
- PAR ID:
- 10593240
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Environmental Science: Nano
- ISSN:
- 2051-8153
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
New types of functional material structures will emerge if the shape and properties are controlled in three-dimensional nanodevices. Possible applications of these would be nanoelectronics and medical systems. Magnetic nanoparticles (MNPs) are especially important in electronics such as magnetic storage, sensors, and spintronics. Also, in those that are used as magnetic resonance imaging contrasts, and tissue specific therapeutic agents, as well as in the labeling and sorting of cells, drug delivery, separation of biochemical products, and in other medical applications. Most of these applications require MNPs to be chemically stable, uniform in size, and controllable in terms of their magnetic properties and shape. In this paper three new functions of iron (Fe)-based nanoparticles are reported: shape transformation, oxidation prevention, and self-alignment. The shape of the Fe nanoparticles could be controlled by changing their oxidation states and properties by using a nanocarbon coating. Full field X-ray microscopy using synchrotron radiation revealed controllable magnetic properties of MNPs at the L 3 edge which depended on the oxidation states. Then, inkjet printing was successfully performed to deposit a uniform layer of MNPs by the size.more » « less
-
Abstract Microplastics and nanoplastics (collectively, MNPs) are increasingly entering soils, with potential adverse impacts to agriculture and groundwater. Environmental detection, characterization, and quantification of MNPs is difficult and subject to artifacts, often requiring labor-intensive separation from environmental matrices. These analytical challenges make it difficult to conduct experiments investigating specific MNP characteristics influencing their transport and fate, particularly when examining multiple plastic types at low concentrations. By synthesizing a suite of metal-tagged polymers, which are cryomilled to create polydisperse fragmented particle suspensions, single particle ICP-MS (spICP-MS) can be used to quantify MNP particle size and concentration in controlled fate and transport studies. Use of unique metal-polymer pairs enables accurate, simultaneous analysis of multiple MNP types which can be used to track total particle transport and retention within a variety of environmental matrices. This was demonstrated using saturated sand column transport experiments to quantify the movement of two plastics having different properties: tin-tagged polystyrene (Sn-PS) and tantalum-tagged polyvinylpyrrolidone (Ta-PVP). The behavior of these polydisperse, fragmented MNPs was compared to that of fluorescent, carboxylated monodisperse PS spherical microspheres (Fl-PS). Mobility of all MNP types increased with decreasing particle size, and hydrophilic Ta-PVP particles migrated more effectively than the hydrophobic Sn-PS particles. Furthermore, the addition of humic acid (HA) to the carrier solution increased the colloidal stability of both metal-tagged MNP suspensions, resulting in much greater elution from the column than in HA-free deionized water or moderately- hard water (ionic strength = 5mM). This combination of particle synthesis and spICP-MS analysis provides insights into the transport of MNP having physical properties that are representative of environmental MNPs and opens up a broad range of applications for study of MNP environmental fate and transport.more » « less
-
Abstract Polymer solar cells (PSCs) with a bulk heterojunction (BHJ) device structure have incredible advantages, such as low‐cost fabrication and flexibility. However, the power conversion efficiency (PCE) of BHJ PSCs needs to be further improved to realize their practical applications. In this study, boosted PCEs from PSCs based on BHJ composites incorporated with Fe3O4magnetic nanoparticles (MNPs), aligned by an external magnetic field (EMF), are reported. It is found that the coercive electric field within the Fe3O4MNPs generated by the EMF has a strong and positive influence on the charge generation, which results in a more than 10% increase in free charge carriers. Moreover, the coercive electric field speeds up the charge carrier transport and suppresses charge carrier recombination within PSCs. In addition, a shortened extraction time makes charge carriers more likely to make it to the electrodes. As a result, more than 15% enhancement in PCE is observed from the PSCs based on the BHJ composite incorporated with the Fe3O4MNPs and the EMF as compared with that based on the BHJ composite thin film. This work indicates that the incorporation of MNPs and the EMF is a facile way to enhance the PCEs of PSCs.more » « less
-
Magnetic nanoparticles (MNPs) are highly versatile nanomaterials in nanomedicine, owing to their diverse magnetic properties, which can be tailored through variations in size, shape, composition, and exposure to inductive magnetic fields. Over four decades of research have led to the clinical approval or ongoing trials of several MNP formulations, fueling continued innovation. Beyond traditional applications in drug delivery, imaging, and cancer hyperthermia, MNPs have increasingly advanced into molecular medicine. Under external magnetic fields, MNPs can generate mechano- or thermal stimuli to modulate individual molecules or cells deep within tissue, offering precise, remote control of biological processes at cellular and molecular levels. These unique capabilities have opened new avenues in emerging fields such as genome editing, cell therapies, and neuroscience, underpinned by a growing understanding of nanomagnetism and the molecular mechanisms responding to mechanical and thermal cues. Research on MNPs as a versatile synthetic material capable of engineering control at the cellular and molecular levels holds great promise for advancing the frontiers of molecular medicine, including areas such as genome editing and synthetic biology. This review summarizes recent clinical studies showcasing the classical applications of MNPs and explores their integration into molecular medicine, with the goal of inspiring the development of next-generation MNP-based platforms for disease treatment.more » « less
An official website of the United States government
