Nuclear noncoding RNAs (ncRNAs) are key regulators of gene expression and chromatin organization. The progress in studying nuclear ncRNAs depends on the ability to identify the genome-wide spectrum of contacts of ncRNAs with chromatin. To address this question, a panel of RNA–DNA proximity ligation techniques has been developed. However, neither of these techniques examines proteins involved in RNA–chromatin interactions. Here, we introduce RedChIP, a technique combining RNA–DNA proximity ligation and chromatin immunoprecipitation for identifying RNA–chromatin interactions mediated by a particular protein. Using antibodies against architectural protein CTCF and the EZH2 subunit of the Polycomb repressive complex 2, we identify a spectrum of cis - and trans -acting ncRNAs enriched at Polycomb- and CTCF-binding sites in human cells, which may be involved in Polycomb-mediated gene repression and CTCF-dependent chromatin looping. By providing a protein-centric view of RNA–DNA interactions, RedChIP represents an important tool for studies of nuclear ncRNAs.
more »
« less
This content will become publicly available on February 1, 2026
Optimizing In Situ Proximity Ligation Assays for Mitochondria, ER, or MERC Markers in Skeletal Muscle Tissue and Cells
Abstract Proximity ligation assays (PLAs) use specific antibodies to detect endogenous protein‐protein interactions. PLAs are a highly useful biochemical technique that allow two proteins within proximity to be visualized with fluorescent probes amplified by PCR. While this technique has gained prominence, the use of a PLA in mouse skeletal muscle (SkM) is novel. In this article, we discuss how the PLA method can be used in SkM to study the protein‐protein interactions within mitochondria‐endoplasmic reticulum contact sites (MERCs). © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Proximity ligation assay for skeletal muscle tissue and myoblast for MERC proteins
more »
« less
- PAR ID:
- 10593288
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- PubMed
- Date Published:
- Journal Name:
- Current Protocols
- Volume:
- 5
- Issue:
- 2
- ISSN:
- 2691-1299
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Skeletal muscle activation using optogenetics has emerged as a promising technique for inducing noninvasive muscle contraction and assessing muscle function both in vivo and in vitro. Transgenic mice overexpressing the optogenetic fusion protein, Channelrhodopsin 2‐EYFP (ChR2‐EYFP) in skeletal muscle are widely used; however, overexpression of fluorescent proteins can negatively impact the functionality of activable tissues. In this study, we characterized the contractile properties of ChR2‐EYFP skeletal muscle and introduced the ChR2‐only mouse model that expresses light‐responsive ChR2 without the fluorescent EYFP in their skeletal muscles. We found a significant reduction in the contractile ability of ChR2‐EYFP muscles compared with ChR2‐only and WT mice, observed under both electrical and optogenetic stimulation paradigms. Bulk RNAseq identified the downregulation of genes associated with transmembrane transport and metabolism in ChR2‐EYFP muscle, while the ChR2‐only muscle did not demonstrate any notable deviations from WT muscle. The RNAseq results were further corroborated by a reduced protein‐level expression of ion channel‐related HCN2 in ChR2‐EYFP muscles and gluconeogenesis‐modulating FBP2 in both ChR2‐EYFP and ChR2‐only muscles. Overall, this study reveals an intrinsic skeletal dysfunction in the widely used ChR2‐EYFP mice model and underscores the importance of considering alternative optogenetic models, such as the ChR2‐only, for future research in skeletal muscle optogenetics.more » « less
-
Abstract A key nutrient sensing process in all animal tissues is the dynamic attachment of O-linked N-acetylglucosamine (O-GlcNAc). Determining the targets and roles of O-GlcNAc glycoproteins has the potential to reveal insights into healthy and diseased metabolic states. In cell studies, thousands of proteins are known to be O-GlcNAcylated, but reference datasets for most tissue types in animals are lacking. Here, we apply a chemoenzymatic labeling study to compile a high coverage dataset of quadriceps skeletal muscle O-GlcNAc glycoproteins from mice. Our dataset contains over 550 proteins, and > 80% of the dataset matched known O-GlcNAc proteins. This dataset was further annotated via bioinformatics, revealing the distribution, protein interactions, and gene ontology (GO) functions of these skeletal muscle proteins. We compared these quadriceps glycoproteins with a high-coverage O-GlcNAc enrichment profile from mouse hearts and describe the key overlap and differences between these tissue types. Quadriceps muscles can be used for biopsies, so we envision this dataset to have potential biomedical relevance in detecting aberrant glycoproteins in metabolic diseases and physiological studies. This new knowledge adds to the growing collection of tissues with high-coverage O-GlcNAc profiles, which we anticipate will further the systems biology of O-GlcNAc mechanisms, functions, and roles in disease.more » « less
-
Protein–protein interactions (PPIs) regulate signalling pathways and cell phenotypes, and the visualization of spatially resolved dynamics of PPIs would thus shed light on the activation and crosstalk of signalling networks. Here we report a method that leverages a sequential proximity ligation assay for the multiplexed profiling of PPIs with up to 47 proteins involved in multisignalling crosstalk pathways. We applied the method, followed by conventional immunofluorescence, to cell cultures and tissues of non-small-cell lung cancers with a mutated epidermal growth-factor receptor to determine the co-localization of PPIs in subcellular volumes and to reconstruct changes in the subcellular distributions of PPIs in response to perturbations by the tyrosine kinase inhibitor osimertinib. We also show that a graph convolutional network encoding spatially resolved PPIs can accurately predict the cell-treatment status of single cells. Multiplexed proximity ligation assays aided by graph-based deep learning can provide insights into the subcellular organization of PPIs towards the design of drugs for targeting the protein interactome.more » « less
-
Mitochondria play a central role in muscle metabolism and function. A unique family of iron–sulfur proteins, termed CDGSH Iron Sulfur Domain-containing (CISD/NEET) proteins, support mitochondrial function in skeletal muscles. The abundance of these proteins declines during aging leading to muscle degeneration. Although the function of the outer mitochondrial CISD/NEET proteins, CISD1/mitoNEET and CISD2/NAF-1, has been defined in skeletal muscle cells, the role of the inner mitochondrial CISD protein, CISD3/MiNT, is currently unknown. Here, we show that CISD3 deficiency in mice results in muscle atrophy that shares proteomic features with Duchenne muscular dystrophy. We further reveal that CISD3 deficiency impairs the function and structure of skeletal muscles, as well as their mitochondria, and that CISD3 interacts with, and donates its [2Fe-2S] clusters to, complex I respiratory chain subunit NADH Ubiquinone Oxidoreductase Core Subunit V2 (NDUFV2). Using coevolutionary and structural computational tools, we model a CISD3–NDUFV2 complex with proximal coevolving residue interactions conducive of [2Fe-2S] cluster transfer reactions, placing the clusters of the two proteins 10 to 16 Å apart. Taken together, our findings reveal that CISD3/MiNT is important for supporting the biogenesis and function of complex I, essential for muscle maintenance and function. Interventions that target CISD3 could therefore impact different muscle degeneration syndromes, aging, and related conditions.more » « less
An official website of the United States government
