skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Realization of spaces of commutative rings
Abstract Motivated by recent work on the use of topological methods to study collections of rings between an integral domain and its quotient field, we examine spaces of subrings of a commutative ring, endowed with the Zariski or patch topologies. We introduce three notions to study such a space : patch bundles, patch presheaves and patch algebras. When is compact and Hausdorff, patch bundles give a way to approximate with topologically more tractable spaces, namely Stone spaces. Patch presheaves encode the space into stalks of a presheaf of rings over a Boolean algebra, thus giving a more geometrical setting for studying . To both objects, a patch bundle and a patch presheaf, we associate what we call a patch algebra, a commutative ring that efficiently realizes the rings in as factor rings, or even localizations, and whose structure reflects various properties of the rings in .  more » « less
Award ID(s):
2231414
PAR ID:
10593349
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Oxford University Press (OUP)
Date Published:
Journal Name:
Journal of the London Mathematical Society
Volume:
111
Issue:
5
ISSN:
0024-6107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We develop and study a generalization of commutative rings calledbands, along with the corresponding geometric theory ofband schemes. Bands generalize both hyperrings, in the sense of Krasner, and partial fields in the sense of Semple and Whittle. They form a ring‐like counterpart to the field‐like category ofidyllsintroduced by the first and third authors in the previous work. The first part of the paper is dedicated to establishing fundamental properties of bands analogous to basic facts in commutative algebra. In particular, we introduce various kinds of ideals in a band and explore their properties, and we study localization, quotients, limits, and colimits. The second part of the paper studies band schemes. After giving the definition, we present some examples of band schemes, along with basic properties of band schemes and morphisms thereof, and we describe functors into some other scheme theories. In the third part, we discuss some “visualizations” of band schemes, which are different topological spaces that one can functorially associate to a band scheme . 
    more » « less
  2. Abstract We study Hecke operators associated with curves over a non-archimedean local field $$K$$ and over the rings $$O/\mathfrak{m}^{N}$$, where $$O\subset K$$ is the ring of integers. Our main result is commutativity of a certain “small” local Hecke algebra over $$O/\mathfrak{m}^{N}$$, associated with a connected split reductive group $$G$$ such that $[G,G]$ is simply connected. The proof uses a Hecke algebra associated with $$G(K(\!(t)\!))$$ and a global argument involving $$G$$-bundles on curves. 
    more » « less
  3. We study modules over the commutative ring spectrum 𝐻𝔽₂∧𝐻𝔽₂, whose coefficient groups are quotients of the dual Steenrod algebra by collections of the Milnor generators. We show that very few of these quotients admit algebra structures, but those that do can be constructed simply: killing a generator ξ_{k} in the category of associative algebras freely kills the higher generators ξ_{k+n}. Using new information about the conjugation operation in the dual Steenrod algebra, we also consider quotients by families of Milnor generators and their conjugates. This allows us to produce a family of associative 𝐻𝔽₂∧𝐻𝔽₂-algebras whose coefficient rings are finite-dimensional and exhibit unexpected duality features. We then use these algebras to give detailed computations of the homotopy groups of several modules over this ring spectrum. 
    more » « less
  4. Abstract Actions on hyperbolic metric spaces are an important tool for studying groups, and so it is natural, but difficult, to attempt to classify all such actions of a fixed group. In this paper, we build strong connections between hyperbolic geometry and commutative algebra in order to classify the cobounded hyperbolic actions of numerous metabelian groups up to a coarse equivalence. In particular, we turn this classification problem into the problems of classifying ideals in the completions of certain rings and calculating invariant subspaces of matrices. We use this framework to classify the cobounded hyperbolic actions of many abelian‐by‐cyclic groups associated to expanding integer matrices. Each such action is equivalent to an action on a tree or on a Heintze group (a classically studied class of negatively curved Lie groups). Our investigations incorporate number systems, factorization in formal power series rings, completions, and valuations. 
    more » « less
  5. null (Ed.)
    In this paper we develop methods for classifying Baker, Richter, and Szymik's Azumaya algebras over a commutative ring spectrum, especially in the largely inaccessible case where the ring is nonconnective. We give obstruction-theoretic tools, constructing and classifying these algebras and their automorphisms with Goerss–Hopkins obstruction theory, and give descent-theoretic tools, applying Lurie's work on $$\infty$$ -categories to show that a finite Galois extension of rings in the sense of Rognes becomes a homotopy fixed-point equivalence on Brauer spaces. For even-periodic ring spectra $$E$$ , we find that the ‘algebraic’ Azumaya algebras whose coefficient ring is projective are governed by the Brauer–Wall group of $$\pi _0(E)$$ , recovering a result of Baker, Richter, and Szymik. This allows us to calculate many examples. For example, we find that the algebraic Azumaya algebras over Lubin–Tate spectra have either four or two Morita equivalence classes, depending on whether the prime is odd or even, that all algebraic Azumaya algebras over the complex K-theory spectrum $KU$ are Morita trivial, and that the group of the Morita classes of algebraic Azumaya algebras over the localization $KU[1/2]$ is $$\mathbb {Z}/8\times \mathbb {Z}/2$$ . Using our descent results and an obstruction theory spectral sequence, we also study Azumaya algebras over the real K-theory spectrum $KO$ which become Morita-trivial $KU$ -algebras. We show that there exist exactly two Morita equivalence classes of these. The nontrivial Morita equivalence class is realized by an ‘exotic’ $KO$ -algebra with the same coefficient ring as $$\mathrm {End}_{KO}(KU)$$ . This requires a careful analysis of what happens in the homotopy fixed-point spectral sequence for the Picard space of $KU$ , previously studied by Mathew and Stojanoska. 
    more » « less