skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 25, 2026

Title: Non-vanishing of geometric Whittaker coefficients for reductive groups
We prove that cuspidal automorphic D D -modules have non-vanishing Whittaker coefficients, generalizing known results in the geometric Langlands program from G L n GL_n to general reductive groups. The key tool is a microlocal interpretation of Whittaker coefficients. We establish various exactness properties in the geometric Langlands context that may be of independent interest. Specifically, we show Hecke functors are t t -exact on the category of tempered D D -modules, strengthening a classical result of Gaitsgory (with different hypotheses) for G L n GL_n . We also show that Whittaker coefficient functors are t t -exact for sheaves with nilpotent singular support. An additional consequence of our results is that the tempered, restricted geometric Langlands conjecture must be t t -exact. We apply our results to show that for suitably irreducible local systems, Whittaker-normalized Hecke eigensheaves are perverse sheaves that are irreducible on each connected component of Bun G \operatorname {Bun}_G more » « less
Award ID(s):
2401526
PAR ID:
10593411
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of the AMS
Date Published:
Journal Name:
Journal of the American Mathematical Society
ISSN:
0894-0347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we consider which families of finite simple groups G G have the property that for each ϵ<#comment/> > 0 \epsilon > 0 there exists N > 0 N > 0 such that, if | G | ≥<#comment/> N |G| \ge N and S , T S, T are normal subsets of G G with at least ϵ<#comment/> | G | \epsilon |G| elements each, then every non-trivial element of G G is the product of an element of S S and an element of T T . We show that this holds in a strong and effective sense for finite simple groups of Lie type of bounded rank, while it does not hold for alternating groups or groups of the form P S L n ( q ) \mathrm {PSL}_n(q) where q q is fixed and n →<#comment/> ∞<#comment/> n\to \infty . However, in the case S = T S=T and G G alternating this holds with an explicit bound on N N in terms of ϵ<#comment/> \epsilon . Related problems and applications are also discussed. In particular we show that, if w 1 , w 2 w_1, w_2 are non-trivial words, G G is a finite simple group of Lie type of bounded rank, and for g ∈<#comment/> G g \in G , P w 1 ( G ) , w 2 ( G ) ( g ) P_{w_1(G),w_2(G)}(g) denotes the probability that g 1 g 2 = g g_1g_2 = g where g i ∈<#comment/> w i ( G ) g_i \in w_i(G) are chosen uniformly and independently, then, as | G | →<#comment/> ∞<#comment/> |G| \to \infty , the distribution P w 1 ( G ) , w 2 ( G ) P_{w_1(G),w_2(G)} tends to the uniform distribution on G G with respect to the L ∞<#comment/> L^{\infty } norm. 
    more » « less
  2. We continue the study of multiple cluster structures in the rings of regular functions on G L n GL_n , S L n SL_n and M a t n Mat_n that are compatible with Poisson–Lie and Poisson-homogeneous structures. According to our initial conjecture, each class in the Belavin–Drinfeld classification of Poisson–Lie structures on a semisimple complex group G \mathcal {G} corresponds to a cluster structure in O ( G ) \mathcal {O}(\mathcal {G}) . Here we prove this conjecture for a large subset of Belavin–Drinfeld (BD) data of A n A_n type, which includes all the previously known examples. Namely, we subdivide all possible A n A_n type BD data into oriented and non-oriented kinds. We further single out BD data satisfying a certain combinatorial condition that we call aperiodicity and prove that for any oriented BD data of this kind there exists a regular cluster structure compatible with the corresponding Poisson–Lie bracket. In fact, we extend the aperiodicity condition to pairs of oriented BD data and prove a more general result that establishes an existence of a regular cluster structure on S L n SL_n compatible with a Poisson bracket homogeneous with respect to the right and left action of two copies of S L n SL_n equipped with two different Poisson-Lie brackets. Similar results hold for aperiodic non-oriented BD data, but the analysis of the corresponding regular cluster structure is more involved and not given here. If the aperiodicity condition is not satisfied, a compatible cluster structure has to be replaced with a generalized cluster structure. We will address these situations in future publications. 
    more » « less
  3. We consider, for N ≥<#comment/> 2 N \geq 2 , the system of N N competing species which are ecologically identical and having distinct diffusion rates { D i } i = 1 N \{D_i\}_{i=1}^N , in an environment with the carrying capacity m ( x , t ) m(x,t) . For a generic class of m ( x , t ) m(x,t) that varies with space and time, we show that there is a positive number D ∗<#comment/> D_* independent of N N so that if D i ≥<#comment/> D ∗<#comment/> D_i \geq D_* for all 1 ≤<#comment/> i ≤<#comment/> N 1\le i\le N , then the slowest diffusing species is able to competitively exclude all other species. In the case when the environment is temporally constant or temporally periodic, our result provides some further evidence in the affirmative direction regarding the conjecture by Dockery et al. [J. Math. Biol. 37 (1998), pp. 61–83]. The main tool is the theory of the principal Floquet bundle for linear parabolic equations. 
    more » « less
  4. We determine for which exotic tori T \mathcal {T} of dimension d ≠<#comment/> 4 d\neq 4 the homomorphism from the group of isotopy classes of orientation-preserving diffeomorphisms of T \mathcal {T} to S L d ( Z ) \mathrm {SL}_d(\mathbf {Z}) given by the action on the first homology group is split surjective. As part of the proof we compute the mapping class group of all exotic tori T \mathcal {T} that are obtained from the standard torus by a connected sum with an exotic sphere. Moreover, we show that any nontrivial S L d ( Z ) \mathrm {SL}_d(\mathbf {Z}) -action on T \mathcal {T} agrees on homology with the standard action, up to an automorphism of S L d ( Z ) \mathrm {SL}_d(\mathbf {Z}) . When combined, these results in particular show that many exotic tori do not admit any nontrivial differentiable action by S L d ( Z ) \mathrm {SL}_d(\mathbf {Z})
    more » « less
  5. By discretizing an argument of Kislyakov, Naor and Schechtman proved that the 1-Wasserstein metric over the planar grid { 0 , 1 , …<#comment/> , n } 2 \{0,1,\dots , n\}^2 has L 1 L_1 -distortion bounded below by a constant multiple of log ⁡<#comment/> n \sqrt {\log n} . We provide a new “dimensionality” interpretation of Kislyakov’s argument, showing that if { G n } n = 1 ∞<#comment/> \{G_n\}_{n=1}^\infty is a sequence of graphs whose isoperimetric dimension and Lipschitz-spectral dimension equal a common number δ<#comment/> ∈<#comment/> [ 2 , ∞<#comment/> ) \delta \in [2,\infty ) , then the 1-Wasserstein metric over G n G_n has L 1 L_1 -distortion bounded below by a constant multiple of ( log ⁡<#comment/> | G n | ) 1 δ<#comment/> (\log |G_n|)^{\frac {1}{\delta }} . We proceed to compute these dimensions for ⊘<#comment/> \oslash -powers of certain graphs. In particular, we get that the sequence of diamond graphs { D n } n = 1 ∞<#comment/> \{\mathsf {D}_n\}_{n=1}^\infty has isoperimetric dimension and Lipschitz-spectral dimension equal to 2, obtaining as a corollary that the 1-Wasserstein metric over D n \mathsf {D}_n has L 1 L_1 -distortion bounded below by a constant multiple of log ⁡<#comment/> | D n | \sqrt {\log | \mathsf {D}_n|} . This answers a question of Dilworth, Kutzarova, and Ostrovskii and exhibits only the third sequence of L 1 L_1 -embeddable graphs whose sequence of 1-Wasserstein metrics is not L 1 L_1 -embeddable. 
    more » « less