Abstract The radius of maximum wind (Rmax) in a tropical cyclone governs the footprint of hazards, including damaging wind, surge, and rainfall. However,Rmaxis an inconstant quantity that is difficult to observe directly and is poorly resolved in reanalyses and climate models. In contrast, outer wind radii are much less sensitive to such issues. Here we present a simple empirical model for predictingRmaxfrom the radius of 34-kt (1 kt ≈ 0.51 m s−1) wind (R17.5 ms). The model only requires as input quantities that are routinely estimated operationally: maximum wind speed,R17.5 ms, and latitude. The form of the empirical model takes advantage of our physical understanding of tropical cyclone radial structure and is trained on the Extended Best Track database from the North Atlantic 2004–20. Results are similar for the TC-OBS database. The physics reduces the relationship between the two radii to a dependence on two physical parameters, while the observational data enables an optimal estimate of the quantitative dependence on those parameters. The model performs substantially better than existing operational methods for estimatingRmax. The model reproduces the observed statistical increase inRmaxwith latitude and demonstrates that this increase is driven by the increase inR17.5 mswith latitude. Overall, the model offers a simple and fast first-order prediction ofRmaxthat can be used operationally and in risk models. Significance StatementIf we can better predict the area of strong winds in a tropical cyclone, we can better prepare for its potential impacts. This work develops a simple model to predict the radius where the strongest winds in a tropical cyclone are located. The model is simple and fast and more accurate than existing models, and it also helps us to understand what causes this radius to vary in time, from storm to storm, and at different latitudes. It can be used in both operational forecasting and models of tropical cyclone hazard risk.
more »
« less
This content will become publicly available on February 1, 2026
A Simple Model for Predicting Tropical Cyclone Minimum Central Pressure from Intensity and Size
Abstract Minimum central pressure (Pmin) is an integrated measure of the tropical cyclone wind field and is known to be a useful indicator of storm damage potential. A simple model that predictsPminfrom routinely estimated quantities, including storm size, would be of great value. Here, we present a simple linear empirical model for predictingPminfrom maximum wind speed, a radius of 34-kt (1 kt ≈ 0.51 m s−1) winds (R34kt), storm center latitude, and the environmental pressure. An empirical model for the pressure deficit is first developed that takes as predictors specific combinations of these quantities that are derived directly from theory based on gradient wind balance and a modified Rankine-type wind profile known to capture storm structure inside ofR34kt. Model coefficients are estimated using data from the southwestern North Atlantic and eastern North Pacific from 2004 to 2022 using aircraft-based estimates ofPmin, extended best track data, and estimates of environmental pressure from Global Forecast System (GFS) analyses. The model has a near-zero conditional bias even for lowPmin, explaining 94.2% of the variance. Performance is superior to a variety of other model formulations, including a standard wind–pressure model that does not account for storm size or latitude (89.2% variance explained). Model performance is also strong when applied to high-latitude data and data near coastlines. Finally, the model is shown to perform comparably well in an operation-like setting based solely on routinely estimated variables, including the pressure of the outermost closed isobar. Case study applications to five impactful historical storms are discussed. Overall, the model offers a simple, fast, physically based prediction forPminfor practical use in operations and research. Significance StatementSea level pressure is lowest at the center of a hurricane and is routinely estimated in operational forecasting along with the maximum wind speed. While the latter is currently used to define hurricane intensity, the minimum pressure is also a viable measure of storm intensity that is known to better represent damage risk. A simple empirical model that predicts the minimum pressure from maximum wind speed and size, and based on the physics of the hurricane wind field, does not currently exist. This work develops such a model by using wind field physics to determine the important parameters and then uses a simple statistical model to make the final prediction. This model is quick and easy to use in weather forecasting and risk assessment applications.
more »
« less
- PAR ID:
- 10593538
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Weather and Forecasting
- Volume:
- 40
- Issue:
- 2
- ISSN:
- 0882-8156
- Page Range / eLocation ID:
- 333 to 346
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The damage potential of a hurricane is widely considered to depend more strongly on an integrated measure of the hurricane wind field, such as integrated kinetic energy (IKE), than a point‐based wind measure, such as maximum sustained wind speed (Vmax). Recent work has demonstrated that minimum sea level pressure (MSLP) is also an integrated measure of the wind field. This study investigates how well historical continental US hurricane damage is predicted by MSLP compared to bothVmaxand IKE for continental United States hurricane landfalls for the period 1988–2021. We first show for the entire North Atlantic basin that MSLP is much better correlated with IKE (rrank = 0.50) thanVmax(rrank = 0.26). We then show that continental US hurricane normalized damage is better predicted by MSLP (rrank = 0.83) than eitherVmax(rrank = 0.67) or IKE (rrank = 0.65). For Georgia to Maine hurricane landfalls specifically, MSLP and IKE show similar levels of skill at predicting damage, whereasVmaxprovides effectively no predictive power. Conclusions for IKE extend to power dissipation as well, as the two quantities are highly correlated because wind radii closely follow a Modified Rankine vortex. The physical relationship of MSLP to IKE and power dissipation is discussed. In addition to better representing damage, MSLP is also much easier to measure via aircraft or surface observations than eitherVmaxor IKE, and it is already routinely estimated operationally. We conclude that MSLP is an ideal metric for characterizing hurricane damage risk.more » « less
-
Abstract An integrated storm surge modeling and traffic analysis were conducted in this study to assess the effectiveness of hurricane evacuations through a case study of Hurricane Irma. The Category 5 hurricane in 2017 caused a record evacuation with an estimated 6.8 million people relocating statewide in Florida. The Advanced Circulation (ADCIRC) model was applied to simulate storm tides during the hurricane event. Model validations indicated that simulated pressures, winds, and storm surge compared well with observations. Model simulated storm tides and winds were used to estimate the area affected by Hurricane Irma. Results showed that the storm surge and strong wind mainly affected coastal counties in south-west Florida. Only moderate storm tides (maximum about 2.5 m) and maximum wind speed about 115 mph were shown in both model simulations and Federal Emergency Management Agency (FEMA) post-hurricane assessment near the area of hurricane landfall. Storm surges did not rise to the 100-year flood elevation level. The maximum wind was much below the design wind speed of 150–170 mph (Category 5) as defined in Florida Building Code (FBC) for south Florida coastal areas. Compared with the total population of about 2.25 million in the six coastal counties affected by storm surge and Category 1–3 wind, the statewide evacuation of approximately 6.8 million people was found to be an over-evacuation due mainly to the uncertainty of hurricane path, which shifted from south-east to south-west Florida. The uncertainty of hurricane tracks made it difficult to predict the appropriate storm surge inundation zone for evacuation. Traffic data were used to analyze the evacuation traffic patterns. In south-east Florida, evacuation traffic started 4 days before the hurricane’s arrival. However, the hurricane path shifted and eventually landed in south-west Florida, which caused a high level of evacuation traffic in south-west Florida. Over-evacuation caused Evacuation Traffic Index ( ETI ) to increase to 200% above normal conditions in some sections of highways, which reduced the effectiveness of evacuation. Results from this study show that evacuation efficiency can be improved in the future by more accurate hurricane forecasting, better public awareness of real-time storm surge and wind as well as integrated storm surge and evacuation modeling for quick response to the uncertainty of hurricane forecasting.more » « less
-
null (Ed.)Hurricane storm surges are influenced by several factors, including wind intensity, surface pressure, forward speed, size, angle of approach, ocean bottom depth and slope, shape and geographical features of the coastline. The relative influence of each factor may be amplified or abated by other factors that are acting at the time of the hurricane’s approach to the land. To understand the individual and combined influence of wind intensity, surface pressure and forward speed, a numerical experiment is conducted using Advanced CIRCulation + Simulating Waves Nearshore (ADCIRC + SWAN) by performing hindcasts of Hurricane Rita storm surges. The wind field generated by Ocean Weather Inc. (OWI) is used as the base meteorological forcing in ADCIRC + SWAN. All parameters are varied by certain percentages from those in the OWI wind field. Simulation results are analyzed for maximum wind intensity, wind vector pattern, minimum surface pressure, forward speed, maximum water elevation, station water elevation time series, and high water marks. The results for different cases are compared against each other, as well as with observed data. Changes in the wind intensity have the greatest impact, followed by the forward speed and surface pressure. The combined effects of the wind intensity and forward speed are noticeably different than their individual effects.more » « less
-
Hurricane storm surges are influenced by wind intensity, forward speed, width and slope of the ocean bottom, central pressure, angle of approach, shape of coastal lines, local features, and storm size. A numerical experiment is conducted using the Advanced Circulation + Simulation and Simulating Waves Nearshore (ADCIRC + SWAN) coupled model for understanding the effects of wind intensity, forward speed, and wave on the storm surges caused by Hurricane Harvey. The ADCIRC + SWAN is used to simulate hurricane storm surges and waves. The wind fields of Hurricane Harvey were reconstructed from observed data, aided by a variety of methodologies and analyses conducted by Ocean Weather Inc (OWI) after the event. These reconstructed wind fields were used as the meteorological forcing in the base case in ADCIRC+SWAN to investigate the storm surges caused by the hurricane. Hurricane Harvey was the second most costly hurricane in the United States, causing severe urban flooding by dropping more than 60 inches of rainfall in Texas. The hurricane made three landfalls, with its first landfall as a Category 4 based on the Saffir–Simpson Hurricane Wind Scale (SSHWS), with wind intensities of 212.98 km/h (59 m/s). The storm surges caused by Hurricane Harvey were unique due to the slow speed, crooked tracks, triple landfalls in the USA, and excessive rain. The model’s storm surge and wave results were compared against observed data. High water marks at 21 locations and time series at 12 National Oceanic and Atmospheric Administration (NOAA) gauges were compared with the generated results. Several cases were investigated by increasing or decreasing the wind intensity or hurricane forward speed by 25% of the OWI wind and pressure data. The effects of the wave were analyzed by comparing the results obtained from ADCIRC + SWAN (with waves) and ADCIRC (without waves) models. The study found that the changes in wind intensity had the most significant effect on storm surges, followed by wave and forward speed changes. This study signifies the importance of considering these factors to enhance accuracy in predicting storm surges.more » « less
An official website of the United States government
