Abstract Terahertz technology has the potential to have a large impact in myriad fields, such as biomedical science, spectroscopy, and communications. Making these applications practical requires efficient, reliable, and low‐cost devices. Photoconductive switches (PCS), devices capable of emitting and detecting terahertz pulses, are a technology that needs more efficiency when working at telecom wavelength excitation (1550 nm) to exploit the advantages this wavelength offers. ErAs:InGaAs is a semiconductor nanocomposite working at this energy; however, high dark resistivity is challenging due to a high electron concentration as the Fermi level lies in the conduction band. To increase dark resistivity, ErAs:InGaAlBiAs material is used as the active material in a PCS detecting Terahertz pulses. ErAs nanoparticles reduce the carrier lifetime to subpicosecond values required for short temporal resolution, while ErAs pins the effective Fermi level in the host material bandgap. Unlike InGaAs, InGaAlBiAs offers enough freedom for band engineering to have a material compatible with a 1550 nm pump and a Fermi level deep in the bandgap, meaning low carrier concentration and high dark resistivity. Band engineering is possible by incorporating aluminum to lift the conduction band edge to the Fermi level and bismuth to keep a bandgap compatible with 1550 nm excitation.
more »
« less
Simulating nanoisland layers in THz detectors using a Monte Carlo method
We present a Monte Carlo model that simulates the effects of non-equilibrium carrier-carrier scattering and the presence of layers of ErAs nanoislands in a GaAs terahertz antenna detector. To minimize computing time, we split the model into two simulations on numerical grids with optimized resolutions. First, we calculate the effects of the ErAs nanoislands on carrier lifetime in a high resolution volume of GaAs. We then incorporate those results into a larger, lower resolution, two-dimensional simulation that models the antenna detector. The computational results match experimental data presented by Kadow et al. [Appl. Phys. Lett. 75, 3548–3550 (1999)] and show that the lifetime of the carriers is closely linked to the periodicity of the nanoisland layers. Our results also highlight how the periodicity of the nanoisland layers affects the sensitivity and bandwidth of the terahertz detector, information that can be used to create custom devices with optimal parameters.
more »
« less
- Award ID(s):
- 1653079
- PAR ID:
- 10593577
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 125
- Issue:
- 3
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We have investigated the influence of non-stoichiometry and local atomic environments on carrier transport in GaAs(N)Bi alloy films using local-electrode atom probe tomography (LEAP) in conjunction with time-resolved terahertz photoconductivity measurements. The local concentrations of N, Bi, and excess As, as well as Bi pair correlations, are quantified using LEAP. Using time-resolved THz photoconductivity measurements, we show that carrier transport is primarily limited by excess As, with the highest carrier mobilities for layers with yBi > 0.035.more » « less
-
null (Ed.)This paper presents the signal generation measurements of LT-GaAs photoconductive antenna (PCA) emitters. These measurements were developed in an open-bench time-domain spectroscopy (TDS) system. The main challenges presented here are associated with the alignment of the PCA devices and the location of the terahertz (THz) pulse with respect to the optical delay in the system. The position of the slow delay line was crucial for the location of the THz pulse, which helped in the correct alignment process of the emitter and detector devices.more » « less
-
This paper presents the signal generation measurements of LT-GaAs photoconductive antenna (PCA) emitters. These measurements were developed in an open-bench time-domain spectroscopy (TDS) system. The main challenges presented here are associated with the alignment of the PCA devices and the location of the terahertz (THz) pulse with respect to the optical delay in the system. The position of the slow delay line was crucial for the location of the THz pulse, which helped in the correct alignment process of the emitter and detector devices.more » « less
-
We demonstrate the use of time-resolved terahertz spectroscopy coupled with numerical modeling of the transport equations to elucidate photoexcited carrier dynamics in a photovoltaic absorber. By measuring a high-quality Cu2ZnSnSe4 single crystal that exhibited device efficiency of 8.6%, we show that critical parameters including mobility, surface recombination velocity, and Shockley-Read-Hall lifetime can be obtained. Mobility values of 80 cm2/Vs were validated with Hall effect measurements. Surface recombination velocity could be reduced by at least two orders of magnitude, to 10^4 cm/s, with appropriate chemical and mechanical polishing. Carrier lifetimes exceeding 10 ns indicate promise for devices with high photovoltage. Terahertz spectroscopy provides complementary insight to conventional time-resolved photoluminescence and is particularly valuable for materials that are not strongly emissive.more » « less
An official website of the United States government
