New compositions of synthetic vesuvianite were investigated using hydrothermal synthesis. High quality single crystals with the formula Ca19Al13Si18O71(OH)7 (I) having the vesuvianite-type structure were crystallized during a high temperature hydrothermal growth reaction. Starting materials of Al2O3 and CaSiO3 reacted at 670 °C and 2 kbar in 0.5 M aqueous alkali hydroxide mineralizer to form single crystals up to 0.25 mm per edge. Similar reactions employing SrO, Fe2O3, and GeO2 reacting at 580 °C and 2 kbar in 6 M aqueous alkali hydroxide mineralizers led to the formation of the analogous Sr19Fe12Ge19O72(OH)6 (II). These crystals were obtained in sizes up to 0.5 mm per edge. The structures of both compounds were refined in space group P4/nnc after careful evaluation of the diffraction data and subsequent test refinements. Elemental analysis indicated only the presence of Ca2+, Al3+, and Si4+ cations in I and only the presence of Sr2+, Fe3+, and Ge4+ cations in II, representing synthetic vesuvianite comprising the minimum number of unique cations. The use of larger cations than are typically found in natural vesuvianite, such as Sr2+, Fe3+, and Ge4+, resulted in an expanded crystalline lattice and extended the vesuvianite analogs to include an increasing variety of elements. 
                        more » 
                        « less   
                    
                            
                            Interaction between water and point defects inside volume-constrained α -quartz: An ab initio molecular dynamics study at 300 K
                        
                    
    
            Quartz-based minerals in earth’s crust are well-known to contain water-related defects within their volume-constrained lattice, and they are responsible for strength-loss. Experimental observations of natural α-quartz indicate that such defects appear as hydroxyl groups attached to Si atoms, called Griggs defect (Si-OH), and molecular water (H2O) located at the interstitial sites. However, factors contributing to the formation of Griggs and interstitial H2O defects remain unclear. For example, the role of point defects like vacancy sites (O2− and Si4+), and substitutional (Al3+) and interstitial (Li+, K+, Ca2+, Mg2+, etc.) ions has remained largely unexplored. Here, we performed ab initio molecular dynamics at 300 K to examine the energetics and structure of water-related defects in volume-constrained α-quartz. Several configurations were systematically interrogated by incorporating interstitial H2O, O2− and Si4+ vacancies, substitutional Al3+, and interstitial Li+, Ca2+ and Mg2+ ions within α-quartz. Interstitial H2O defect was found to be energetically favorable in the presence of Substitutional Al3+, and interstitial Ca2+, Mg2+, and Li1+. In the presence of O2− and Si4+ vacancies, H2O showed a strong tendency to dissociate into OH—to form Griggs defect—and a proton; even in the presence of substitutional and interstitial ions. These ions distorted the α-quartz lattice and, in the extreme case, disrupted long-range order to form local amorphous domains; consistent with experimental reports. Our study provides an initial framework for understanding the impact of water within the crystal lattice of an anhydrous silicate mineral such as quartz. We provide not only thermodynamic and process-related information on observed defects, but also provides guidelines for future studies of water’s impact on the behavior of silicate minerals. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2333630
- PAR ID:
- 10593578
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 135
- Issue:
- 16
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Bridgmanite, the most abundant mineral in the lower mantle, can play an essential role in deep-Earth hydrogen storage and circulation processes. To better evaluate the hydrogen storage capacity and its substitution mechanism in bridgmanite occurring in nature, we have synthesized high-quality single-crystal bridgmanite with a composition of (Mg0.88Fe0.052+Fe0.053+Al0.03)(Si0.88Al0.11H0.01)O3 at nearly water-saturated environments relevant to topmost lower mantle pressure and temperature conditions. The crystallographic site position of hydrogen in the synthetic (Fe,Al)-bearing bridgmanite is evaluated by a time-of-flight single-crystal neutron diffraction scheme, together with supporting evidence from polarized infrared spectroscopy. Analysis of the results shows that the primary hydrogen site has an OH bond direction nearly parallel to the crystallographic b axis of the orthorhombic bridgmanite lattice, where hydrogen is located along the line between two oxygen anions to form a straight geometry of covalent and hydrogen bonds. Our modeled results show that hydrogen is incorporated into the crystal structure via coupled substitution of Al3+ and H+ simultaneously exchanging for Si4+, which does not require any cation vacancy. The concentration of hydrogen evaluated by secondary-ion mass spectrometry and neutron diffraction is ~0.1 wt% H2O and consistent with each other, showing that neutron diffraction can be an alternative quantitative means for the characterization of trace amounts of hydrogen and its site occupancy in nominally anhydrous minerals.more » « less
- 
            In this paper, ordered TiO 2 nanotubes were grown on a Ti substrate via electrochemical anodization and subsequently annealed at 450 °C for 4 h under various atmospheres to create different point defects. Oxygen-deficient environments such as Ar and N 2 were used to develop oxygen vacancies, while a water vapor (WV) atmosphere was used to generate titanium vacancies. Computational models by density functional theory predicted that the presence of oxygen vacancies would cause electronic conductivity to increase, while the presence of Ti vacancies could lead to decreased conductivity. The predictions were confirmed by two-point electrical conductivity measurements and Mott–Schottky analysis. Raman spectroscopy was also conducted to confirm the presence of defects. The annealed samples were then evaluated as anodes in lithium-ion batteries. The oxygen-deficient samples had an improvement in capacity by 10% and 25% for Ar- and N 2 -treated samples, respectively, while the WV-treated sample displayed a capacity increase of 24% compared to the stoichiometric control sample (annealed in O 2 ). Electrochemical impedance spectroscopy studies revealed that the WV-treated sample's increased capacity was a consequence of its higher Li diffusivity. The results suggest that balanced electrical and ionic conductivity in nanostructured metal oxide anodes can be tuned through defect generation using heat treatments in various atmospheres for improved electrochemical properties.more » « less
- 
            As key mediators in a wide array of signaling events, phosphoinositides (PIPs) orchestrate the recruitment of proteins to specific cellular locations at precise moments. This intricate spatiotemporal regulation of protein activity often necessitates the localized enrichment of the corresponding PIP. We investigate the extent and thermal stabilities of phosphatidylinositol-4-phosphate (PI(4)P), phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2 and phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) clusters with calcium and magnesium ions. We observe negligible or minimal clustering of all examined PIPs in the presence of Mg2+ ions. While PI(4)P shows in the presence of Ca2+ no clustering, PI(4,5)P2 forms with Ca2+ strong clusters that exhibit stablity up to at least 80◦C. The extent of cluster formation for the interaction of PI(3,4,5)P3 with Ca2+ is less than what was observed for PI(4,5)P2, yet we still observe some clustering up to 80◦C. Given that cholesterol has been demonstrated to enhance PIP clustering, we examined whether bivalent cations and cholesterol synergistically promote PIP clustering. We found that the interaction of Mg2+ or Ca2+ with PI(4)P remains extraordinarily weak, even in the presence of cholesterol. In contrast, we observe synergistic interaction of cholesterol and Ca2+ with PI(4,5)P2. Also, in the presence of cholesterol, the interaction of Mg2+ with PI(4,5)P2 remains weak. PI(3,4,5)P3 does not show strong clustering with cholesterol for the experimental conditions of our study and the interaction with Ca2+ and Mg2+ was not influenced by the presence of cholesterol.more » « less
- 
            Diffusion of native defects such as vacancies and their interactions with impurities are fundamental to semiconductor crystal growth, device processing, and design. However, the transient equilibration of native defects is difficult to directly measure. We used (AlxGa1−x)2O3/Ga2O3 superlattices (SLs) to detect and analyze transient diffusion of cation vacancies during annealing in O2 at 1000–1100 °C. Using a novel finite difference scheme for diffusion with time- and space-varying diffusion constants, we determined diffusion constants for Al, Fe, and cation vacancies, including the vacancy concentration dependence for Al. In the case of SLs grown on Sn-doped β-Ga2O3 (010) substrates, gradients observed in the extent of Al diffusion indicate a supersaturation of vacancies in the substrates that transiently diffuse through the SLs coupled strongly to Sn and thus slowed compared to undoped cases. In the case of SLs grown on (010) Fe-doped substrates, the Al diffusion is uniform through the SLs, indicating a depth-uniform concentration of vacancies. We find no evidence for the introduction of VGa from the free surface at rates sufficient to affect Al diffusion at at. % concentrations, establishing an upper bound on surface injection. In addition, we show that unintentional impurities in Sn-doped Ga2O3 such as Fe, Ni, Mn, Cu, and Li also diffuse toward the surface and accumulate. Many of these likely have fast interstitial diffusion modes capable of destabilizing devices, thus suggesting that impurities may require further reduction. This work provides a method to measure transients in diffusion-mediating native defects otherwise hidden in common processes such as ion implantation, etching, and film growth.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
