skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Orthogonal Arrays: A Review
ABSTRACT Orthogonal arrays are arguably one of the most fascinating and important statistical tools for efficient data collection. They have a simple, natural definition, desirable properties when used as fractional factorials, and a rich and beautiful mathematical theory. Their connections with combinatorics, finite fields, geometry, and error‐correcting codes are profound. Orthogonal arrays have been widely used in agriculture, engineering, manufacturing, and high‐technology industries for quality and productivity improvement experiments. In recent years, they have drawn rapidly growing interest from various fields such as computer experiments, integration, visualization, optimization, big data, machine learning/artificial intelligence through successful applications in those fields. We review the fundamental concepts and statistical properties and report recent developments. Discussions of recent applications and connections with various fields are presented. Some interesting open research directions are also presented.  more » « less
Award ID(s):
2304767
PAR ID:
10593629
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
WIREs Computational Statistics
Volume:
17
Issue:
2
ISSN:
1939-5108
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Observations in various applications are frequently represented as a time series of multidimensional arrays, called tensor time series, preserving the inherent multidimensional structure. In this paper, we present a factor model approach, in a form similar to tensor CANDECOMP/PARAFAC (CP) decomposition, to the analysis of high-dimensional dynamic tensor time series. As the loading vectors are uniquely defined but not necessarily orthogonal, it is significantly different from the existing tensor factor models based on Tucker-type tensor decomposition. The model structure allows for a set of uncorrelated one-dimensional latent dynamic factor processes, making it much more convenient to study the underlying dynamics of the time series. A new high-order projection estimator is proposed for such a factor model, utilizing the special structure and the idea of the higher order orthogonal iteration procedures commonly used in Tucker-type tensor factor model and general tensor CP decomposition procedures. Theoretical investigation provides statistical error bounds for the proposed methods, which shows the significant advantage of utilizing the special model structure. Simulation study is conducted to further demonstrate the finite sample properties of the estimators. Real data application is used to illustrate the model and its interpretations. 
    more » « less
  2. Plasmonic nanostructures with electrical connections have potential applications as new electro-optic devices due to their strong light–matter interactions. Plasmonic dimers with nanogaps between adjacent nanostructures are especially good at enhancing local electromagnetic (EM) fields at resonance for improved performance. In this study, we use optical extinction measurements and high-resolution electron microscopy imaging to investigate the thermal stability of electrically interconnected plasmonic dimers and their optical and morphological properties. Experimental measurements and finite difference time domain (FDTD) simulations are combined to characterize temperature effects on the plasmonic properties of large arrays of Au nanostructures on glass substrates. Experiments show continuous blue shifts of extinction peaks for heating up to 210°C. Microscopy measurements reveal these peak shifts are due to morphological changes that shrink nanorods and increase nanogap distances. Simulations of the nanostructures before and after heating find good agreement with experiments. Results show that plasmonic properties are maintained after thermal processing, but peak shifts need to be considered for device design. 
    more » « less
  3. Abstract Photoelectrode materials are the heart of photoelectrochemical (PEC) cells, which hold great promise to address global energy and environmental issues by converting solar energy into electricity or chemical fuels. In recent decades, significant research efforts have been devoted to the design and construction of photoelectrodes for the efficient generation and utilization of charge carriers to boost PEC performance. Herein, insights from a literature study on the relationship between the architecture and charge dynamics of photoelectrodes are presented. After briefly introducing the fundamental theories of charge dynamics in nanostructured photoelectrodes, the development of photoelectrode design in 1D polycrystalline nanotube arrays, 1D single‐crystalline nanowire arrays, and hierarchical and mesoporous nanowire arrays is reviewed with a focus on the interplay between architecture and charge transport properties. For each design, commonly used synthetic approaches and the corresponding charge transport properties are discussed. Subsequently, the applications of these photoelectrodes in PEC systems are summarized. In conclusion, future challenges in the rational design of photoelectrode architecture are presented. The basic relationships between the architectures and charge dynamics of photoelectrode materials discussed here are expected to provide pertinent guidance and a reference for future advanced material design targeting improved light energy conversion systems. 
    more » « less
  4. null (Ed.)
    This article provides an overview of tensors, their properties, and their applications in statistics. Tensors, also known as multidimensional arrays, are generalizations of matrices to higher orders and are useful data representation architectures. We first review basic tensor concepts and decompositions, and then we elaborate traditional and recent applications of tensors in the fields of recommender systems and imaging analysis. We also illustrate tensors for network data and explore the relations among interacting units in a complex network system. Some canonical tensor computational algorithms and available software libraries are provided for various tensor decompositions. Future research directions, including tensors in deep learning, are also discussed. 
    more » « less
  5. Large amounts of multidimensional data represented by multiway arrays or tensors are prevalent in modern applications across various fields such as chemometrics, genomics, physics, psychology, and signal processing. The structural complexity of such data provides vast new opportunities for modeling and analysis, but efficiently extracting information content from them, both statistically and computationally, presents unique and fundamental challenges. Addressing these challenges requires an interdisciplinary approach that brings together tools and insights from statistics, optimization, and numerical linear algebra, among other fields. Despite these hurdles, significant progress has been made in the past decade. This review seeks to examine some of the key advancements and identify common threads among them, under a number of different statistical settings. 
    more » « less