skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Heating Effects on Nanofabricated Plasmonic Dimers with Interconnects
Plasmonic nanostructures with electrical connections have potential applications as new electro-optic devices due to their strong light–matter interactions. Plasmonic dimers with nanogaps between adjacent nanostructures are especially good at enhancing local electromagnetic (EM) fields at resonance for improved performance. In this study, we use optical extinction measurements and high-resolution electron microscopy imaging to investigate the thermal stability of electrically interconnected plasmonic dimers and their optical and morphological properties. Experimental measurements and finite difference time domain (FDTD) simulations are combined to characterize temperature effects on the plasmonic properties of large arrays of Au nanostructures on glass substrates. Experiments show continuous blue shifts of extinction peaks for heating up to 210°C. Microscopy measurements reveal these peak shifts are due to morphological changes that shrink nanorods and increase nanogap distances. Simulations of the nanostructures before and after heating find good agreement with experiments. Results show that plasmonic properties are maintained after thermal processing, but peak shifts need to be considered for device design.  more » « less
Award ID(s):
2150158
PAR ID:
10515108
Author(s) / Creator(s):
; ;
Publisher / Repository:
World Scientific
Date Published:
Journal Name:
International Journal of High Speed Electronics and Systems
Volume:
32
Issue:
02n04
ISSN:
0129-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The properties of the leaky surface plasmon polariton (SPP) modes in gold nanostripes were investigated using scattered light microscopy. Both bare gold nanostripes and stripes coated with a thin polymer film containing a near-infrared absorbing dye were examined. Real-space microscopy images were employed to determine the SPP propagation length, while Fourier space images provided measurements of the wavevector. Frequency versus wavevector dispersion curves were generated by performing experiments at different excitation wavelengths, and the slopes of these curves yielded the SPP group velocities. For the bare nanostripes the group velocity was determined to be vg = (0.92 ± 0.05)c0 and for the dye-coated nanostripes it was vg = (0.85 ± 0.06)c0, where c0 is the speed of light. The SPP lifetimes were estimated by combining the group velocity and propagation length measurements. The results show that the lifetime of the gold SPPs is significantly reduced when the nanostripes are coated with the dye. At the peak of the dye absorption curve the change in the SPP dephasing rate induced by the dye–polymer film was found to be 0.07 fs–1. Finite element simulations show that the increased dephasing is due to a combination of energy transfer from the SPP modes to the dye, as well as increased radiation damping due to changes in the dielectric environment of the nanostructures. These findings provide insights into the energy transfer processes in plasmonic systems, which can be leveraged to optimize the design of plasmonic devices for applications in sensing, imaging and nanophotonic circuits. 
    more » « less
  2. null (Ed.)
    The organization of plasmonic nanoparticles (NPs) determines the strength and polarization dependence of coupling of their surface plasmons. In this study, plasmon coupling of spherical Au NPs with an average diameter of 15 nm was investigated in shape-memory polymer films before and after mechanical stretching and then after thermally driving shape recovery. Clusters of Au NPs form when preparing the films that exhibit strong plasmon coupling. During stretching, a significant polarization-dependent response develops, where the optical extinction maximum corresponding to the surface plasmon resonance is redshifted by 19 nm and blueshifted by 7 nm for polarization parallel and perpendicular to the stretching direction, respectively. This result can be explained by non-uniform stretching on the nanoscale, where plasmon coupling increases parallel to the shear direction as Au NPs are pulled into each other during stretching. The polarization dependence vanishes after shape recovery, and structural characterization confirms the return of isotropy consistent with complete nanoscale recovery of the initial arrangement of Au NPs. Simulations of the polarized optical responses of Au NP dimers at different interparticle spacings establish a plasmon ruler for estimating the average interparticle spacings within the experimental samples. An investigation of the temperature-dependent recovery behavior demonstrates an application of these materials as optical thermal history sensors. 
    more » « less
  3. Abstract Nanostructured gold has attracted significant interest from materials science, chemistry, optics and photonics, and biology due to their extraordinary potential for manipulating visible and near‐infrared light through the excitation of plasmon resonances. However, gold nanostructures are rarely measured experimentally in their plasmonic properties and hardly used for high‐temperature applications because of the inherent instability in mass and shape due to the high surface energy at elevated temperatures. In this work, the first direct observation of thermally excited surface plasmons in gold nanorods at 1100 K is demonstrated. By coupling with an optical fiber in the near‐field, the thermally excited surface plasmons from gold nanorods can be converted into the propagating modes in the optical fiber and experimentally characterized in a remote manner. This fiber‐coupled technique can effectively characterize the near‐field thermoplasmonic emission from gold nanorods. A direct simulation scheme is also developed to quantitively understand the thermal emission from the array of gold nanorods. The experimental work in conjunction with the direct simulation results paves the way of using gold nanostructures as high‐temperature plasmonic nanomaterials, which has important implications in thermal energy conversion, thermal emission control, and chemical sensing. 
    more » « less
  4. Abstract Incorporation of metallic nanoparticles (NPs) in polymer matrix has been used to enhance and control dissolution and release of drugs, for targeted drug delivery, as antimicrobial agents, localized heat sources, and for unique optoelectronic applications. Gold NPs in particular exhibit a plasmonic response that has been utilized for photothermal energy conversion. Because plasmonic nanoparticles typically exhibit a plasmon resonance frequency similar to the visible light spectrum, they present as good candidates for direct photothermal conversion with enhanced solar thermal efficiency in these wavelengths. In our work, we have incorporated ∼3-nm-diameter colloidal gold (Au c ) NPs into electrospun polyethylene glycol (PEG) fibers to utilize the nanoparticle plasmonic response for localized heating and melting of the polymer to release medical treatment. Au c and Au c in PEG (PEG+Au c ) both exhibited a minimum reflectivity at 522 nm or approximately green wavelengths of light under ultraviolet-visible (UV-Vis) spectroscopy. PEG+Au c ES fibers revealed a blue shift in minimum reflectivity at 504 nm. UV-Vis spectra were used to calculate the theoretical efficiency enhancement of PEG+Au c versus PEG alone, finding an approximate increase of 10 % under broad spectrum white light interrogation, and ∼14 % when illuminated with green light. Au c enhanced polymers were ES directly onto resistance temperature detectors and interrogated with green laser light so that temperature change could be recorded. Results showed a maximum increase of 8.9 °C. To further understand how gold nanomaterials effect the complex optical properties of our materials, spectroscopic ellipsometry was used. Using spectroscopic ellipsometry and modeling with CompleteEASE® software, the complex optical constants of our materials were determined. The complex optical constant n (index of refraction) provided us with optical density properties related to light wavelength divided by velocity, and k (extinction coefficient) was used to show the absorptive properties of the materials. 
    more » « less
  5. Cu is an inexpensive alternative plasmonic metal with optical behaviour comparable to Au but with much poorer environmental stability. Alloying with a more stable metal can improve stability and add functionality, with potential effects on the plasmonic properties. Here we investigate the plasmonic behaviour of Cu nanorods and Cu–CuPd nanorods containing up to 46 mass percent Pd. Monochromated scanning transmission electron microscopy electron energy-loss spectroscopy first reveals the strong length dependence of multiple plasmonic modes in Cu nanorods, where the plasmon peaks redshift and narrow with increasing length. Next, we observe an increased damping (and increased linewidth) with increasing Pd content, accompanied by minimal frequency shift. These results are corroborated by and expanded upon with numerical simulations using the electron-driven discrete dipole approximation. This study indicates that adding Pd to nanostructures of Cu is a promising method to expand the scope of their plasmonic applications. 
    more » « less