Two distinct ultra-thin Ge1−xSnx (x ≤ 0.1) epilayers were deposited on (001) Si substrates at 457 and 313 °C through remote plasma-enhanced chemical vapor deposition. These films are considered potential initiation layers for synthesizing thick epitaxial GeSn films. The GeSn film deposited at 313 °C has a thickness of 10 nm and exhibits a highly epitaxial continuous structure with its lattice being compressed along the interface plane to coherently match Si without mismatch dislocations. The GeSn film deposited at 457 °C exhibits a discrete epitaxial island-like morphology with a peak height of ∼30 nm and full-width half maximum (FWHM) varying from 20 to 100 nm. GeSn islands with an FWHM smaller than 20 nm are defect free, whereas those exceeding 25 nm encompass nanotwins and/or stacking faults. The GeSn islands form two-dimensional modulated superlattice structures at the interface with Si. The GeSn film deposited at 457 °C possesses a lower Sn content compared to the one deposited at lower temperature. The potential impact of using these two distinct ultra-thin layers as initiation layers for the direct growth of thicker GeSn epitaxial films on (001) Si substrates is discussed. 
                        more » 
                        « less   
                    
                            
                            Epitaxial twin coupled microstructure in GeSn films prepared by remote plasma enhanced chemical vapor deposition
                        
                    
    
            Growth of GeSn films directly on Si substrates is desirable for integrated photonics applications since the absence of an intervening buffer layer simplifies device fabrication. Here, we analyze the microstructure of two GeSn films grown directly on (001) Si by remote plasma-enhanced chemical vapor deposition (RPECVD): a 1000 nm thick film containing 3% Sn and a 600 nm thick, 10% Sn film. Both samples consist of an epitaxial layer with nano twins below a composite layer containing nanocrystalline and amorphous. The epilayer has uniform composition, while the nanocrystalline material has higher levels of Sn than the surrounding amorphous matrix. These two layers are separated by an interface with a distinct, hilly morphology. The transition between the two layers is facilitated by formation of densely populated (111)-coupled nano twins. The 10% Sn sample exhibits a significantly thinner epilayer than the one with 3% Sn. The in-plane lattice mismatch between GeSn and Si induces a quasi-periodic misfit dislocation network along the interface. Film growth initiates at the interface through formation of an atomic-scale interlayer with reduced Sn content, followed by the higher Sn content epitaxial layer. A corrugated surface containing a high density of twins with elevated levels of Sn at the peaks begins forming at a critical thickness. Subsequent epitaxial breakdown at the peaks produces a composite containing high levels of Sn nanocrystalline embedded in lower level of Sn amorphous. The observed microstructure and film evolution provide valuable insight into the growth mechanism that can be used to tune the RPECVD process for improved film quality. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10593681
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 135
- Issue:
- 16
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            GeSn films were simultaneously deposited on Si (100), Si (111), c-plane sapphire (Al2O3), and fused silica substrates to investigate the impact of the substrate on the resulting GeSn film. The electronic, structural, and optical properties of these films were characterized by temperature-dependent Hall-effect measurements, x-ray diffractometry, secondary ion mass spectrometry, and variable angle spectroscopic ellipsometry. All films were polycrystalline with varying degrees of texturing. The film on Si (100) contained only GeSn (100) grains, 40.4 nm in diameter. The film deposited on Si (111) contained primarily GeSn (111) grains, 36.4 nm in diameter. Both films deposited on silicon substrates were fully relaxed. The layer deposited on Al2O3 contained primarily GeSn (111) grains, 41.3 nm in diameter. The film deposited on fused silica was not textured, and the average grain size was 35.0 nm. All films contained ∼5.6 at. % Sn throughout the layer, except for the film deposited on Al2O3, which contained 7.5% Sn. The films deposited on Si (111), Al2O3, and fused silica exhibit p-type conduction over the entire temperature range, 10–325 K, while the layer deposited on the Si (100) substrate shows a mixed conduction transition from p-type at low temperature to n-type above 220 K. From ∼175 to 260 K, both holes and electrons contribute to conduction. Texturing of the GeSn film on Si (100) was the only characteristic that set this film apart from the other three films, suggesting that something related to GeSn (100) crystal orientation causes this transition from p- to n-type conduction.more » « less
- 
            Abstract This work reports on the correlation between structure, surface/interface morphology and mechanical properties of pulsed laser deposited (PLD)β-Ga2O3films on transparent quartz substrates. By varying the deposition temperature in the range of 25 °C–700 °C, ∼200 nm thick Ga2O3films with variable microstructure and amorphous-to-nanocrystalline nature were produced onto quartz substrates by PLD. The Ga2O3films deposited at room temperature were amorphous; nanocrystalline Ga2O3films were realized at 700 °C. The interface microstructure is characterized with a typical nano-columnar morphology while the surface exhibits the uniform granular morphology. Corroborating with structure and surface/interface morphology, and with increasing deposition temperature, tunable mechanical properties were seen in PLD Ga2O3films. At 700 °C, for nanocrystalline Ga2O3films, the dense grain packing reduces the elastic modulus Erwhile improving the hardness. The improved crystallinity at elevated temperatures coupled with nanocrystallinity, theβ-phase stabilization is accounted for the observed enhancement in the mechanical properties of PLD Ga2O3films. The structure-morphology-mechanical property correlation in nanocrystalline PLDβ-Ga2O3films deposited on quartz substrates is discussed in detail.more » « less
- 
            We report on the growth of Si-doped homoepitaxial β-Ga2O3 thin films on (010) Ga2O3 substrates via metal-organic chemical vapor deposition (MOCVD) utilizing triethylgallium (TEGa) and trimethylgallium (TMGa) precursors. The epitaxial growth achieved an impressive 9.5 μm thickness at 3 μm/h using TMGa, a significant advance in material growth for electronic device fabrication. This paper systematically studies the Schottky barrier diodes fabricated on the three MOCVD-grown films, each exhibiting variations in the epilayer thickness, doping levels, and growth rates. The diode from the 2 μm thick Ga2O3 epilayer with TEGa precursor demonstrates promising forward current densities, the lowest specific on-resistance, and the lowest ideality factor, endorsing TEGa’s potential for MOCVD growth. Conversely, the diode from the 9.5 μm thick Ga2O3 layer with TMGa precursor exhibits excellent characteristics in terms of lowest leakage current, highest on-off ratio, and highest reverse breakdown voltage of −510 V without any electric field management, emphasizing TMGa’s suitability for achieving high growth rates in Ga2O3 epilayers for vertical power electronic devices.more » « less
- 
            A new type of high-entropy alloy, a nitride-based (AlCrTiZrMo)N/ZrO2 nano-multilayered film, was designed to investigate the effect of ZrO2 layer thickness on the microstructure, mechanical properties, and thermal stability. The results show that when the thickness of the ZrO2 layer is less than 0.6 nm, it can be transformed into cubic-phase growth under the template effect of the (AlCrTiZrMo)N layer, resulting in an increased hardness. The (AlCrTiZrMo)N/ZrO2 film with a ZrO2 layer thickness of 0.6 nm has the highest hardness and elastic modulus of 35.1 GPa and 376.4 GPa, respectively. As the thickness of the ZrO2 layer further increases, ZrO2 cannot maintain the cubic structure, and the epitaxial growth interface is destroyed, resulting in a decrease in hardness. High-temperature annealing treatments indicate that the mechanical properties of the film decrease slightly after annealing at less than 900 °C for 30 min, while the mechanical properties decrease significantly after annealing for 30 min at 1000–1100 °C. The hardness and elastic modulus after annealing at 900 °C are still 24.5 GPa and 262.3 GPa, showing excellent thermal stability. This conclusion verifies the “template” effect of the nano-multilayered film, which improves the hardness and thermal stability of the high-entropy alloy.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
