Growth of GeSn films directly on Si substrates is desirable for integrated photonics applications since the absence of an intervening buffer layer simplifies device fabrication. Here, we analyze the microstructure of two GeSn films grown directly on (001) Si by remote plasma-enhanced chemical vapor deposition (RPECVD): a 1000 nm thick film containing 3% Sn and a 600 nm thick, 10% Sn film. Both samples consist of an epitaxial layer with nano twins below a composite layer containing nanocrystalline and amorphous. The epilayer has uniform composition, while the nanocrystalline material has higher levels of Sn than the surrounding amorphous matrix. These two layers are separated by an interface with a distinct, hilly morphology. The transition between the two layers is facilitated by formation of densely populated (111)-coupled nano twins. The 10% Sn sample exhibits a significantly thinner epilayer than the one with 3% Sn. The in-plane lattice mismatch between GeSn and Si induces a quasi-periodic misfit dislocation network along the interface. Film growth initiates at the interface through formation of an atomic-scale interlayer with reduced Sn content, followed by the higher Sn content epitaxial layer. A corrugated surface containing a high density of twins with elevated levels of Sn at the peaks begins forming at a critical thickness. Subsequent epitaxial breakdown at the peaks produces a composite containing high levels of Sn nanocrystalline embedded in lower level of Sn amorphous. The observed microstructure and film evolution provide valuable insight into the growth mechanism that can be used to tune the RPECVD process for improved film quality. 
                        more » 
                        « less   
                    
                            
                            Temperature-dependent morphology and composition of ultra-thin GeSn epilayers prepared by remote plasma enhanced chemical vapor deposition
                        
                    
    
            Two distinct ultra-thin Ge1−xSnx (x ≤ 0.1) epilayers were deposited on (001) Si substrates at 457 and 313 °C through remote plasma-enhanced chemical vapor deposition. These films are considered potential initiation layers for synthesizing thick epitaxial GeSn films. The GeSn film deposited at 313 °C has a thickness of 10 nm and exhibits a highly epitaxial continuous structure with its lattice being compressed along the interface plane to coherently match Si without mismatch dislocations. The GeSn film deposited at 457 °C exhibits a discrete epitaxial island-like morphology with a peak height of ∼30 nm and full-width half maximum (FWHM) varying from 20 to 100 nm. GeSn islands with an FWHM smaller than 20 nm are defect free, whereas those exceeding 25 nm encompass nanotwins and/or stacking faults. The GeSn islands form two-dimensional modulated superlattice structures at the interface with Si. The GeSn film deposited at 457 °C possesses a lower Sn content compared to the one deposited at lower temperature. The potential impact of using these two distinct ultra-thin layers as initiation layers for the direct growth of thicker GeSn epitaxial films on (001) Si substrates is discussed. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10520787
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- Journal of Vacuum Science & Technology B
- Volume:
- 42
- Issue:
- 3
- ISSN:
- 2166-2746
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            GeSn films were simultaneously deposited on Si (100), Si (111), c-plane sapphire (Al2O3), and fused silica substrates to investigate the impact of the substrate on the resulting GeSn film. The electronic, structural, and optical properties of these films were characterized by temperature-dependent Hall-effect measurements, x-ray diffractometry, secondary ion mass spectrometry, and variable angle spectroscopic ellipsometry. All films were polycrystalline with varying degrees of texturing. The film on Si (100) contained only GeSn (100) grains, 40.4 nm in diameter. The film deposited on Si (111) contained primarily GeSn (111) grains, 36.4 nm in diameter. Both films deposited on silicon substrates were fully relaxed. The layer deposited on Al2O3 contained primarily GeSn (111) grains, 41.3 nm in diameter. The film deposited on fused silica was not textured, and the average grain size was 35.0 nm. All films contained ∼5.6 at. % Sn throughout the layer, except for the film deposited on Al2O3, which contained 7.5% Sn. The films deposited on Si (111), Al2O3, and fused silica exhibit p-type conduction over the entire temperature range, 10–325 K, while the layer deposited on the Si (100) substrate shows a mixed conduction transition from p-type at low temperature to n-type above 220 K. From ∼175 to 260 K, both holes and electrons contribute to conduction. Texturing of the GeSn film on Si (100) was the only characteristic that set this film apart from the other three films, suggesting that something related to GeSn (100) crystal orientation causes this transition from p- to n-type conduction.more » « less
- 
            The emerging optoelectronic material family of transition metal dichalcogenides may be useful in flexible electronics. However, only MoS2 has been grown directly as thin films on polymer substrates, owing in part to the high deposition temperatures typically required to prepare these materials. Changing vapor deposition chemistry can allow much lower film growth temperatures. We show that when using tetrakis(dimethylamido)zirconium(IV), Zr(NMe2)4, and H2S as precursors, low-temperature chemical vapor deposition affords films of zirconium(IV) sulfide (ZrS2) directly on polymer substrates. Stoichiometric and crystalline ZrS2 films can be deposited with good adhesion on polyimide (Kapton) and polyether ether ketone (PEEK) substrates at 150–200 °C. The films deposited on polydimethylsiloxane (PDMS) substrates were stoichiometric and crystalline, but not well adhered. Films on all substrates were polycrystalline with small (20–30 nm) grains, highly oriented in the [001] direction of the 1T ZrS2 phase. The films grown on PEEK have resistivities ca. 625 Ω cm, two orders of magnitude higher than ZrS2 films deposited at 800–1000 °C from ZrCl4 and sulfur. The films grown on Kapton are similarly conductive, whereas films on PDMS are not conductive.more » « less
- 
            We report the growth and optical characterization of single-crystal BiFe1−xMnxO3 thin films directly on SrTiO3/Si(001) substrates using molecular beam epitaxy. X-ray diffraction confirmed epitaxial growth, film crystallinity, and sharp interface quality. Scanning electron microscopy and energy dispersive X-ray spectroscopy verified uniform film morphology and successful Mn incorporation. Spectroscopic ellipsometry revealed a systematic bandgap reduction with increasing Mn concentration, from 2.7 eV in BiFeO3 to 2.58 eV in BiFe0.74Mn0.26O3, consistent with previous reports on Mn-doped BiFeO3. These findings highlight the potential of BiFe1₋xMnxO3 films for bandgap engineering, advancing their integration into silicon-compatible multifunctional optoelectronic and photovoltaic applications.more » « less
- 
            MnO(001) thin films were grown on commercial MgO(001) substrates at 520 °C by reactive molecular beam epitaxy (MBE) using Mn vapor and O2-seeded supersonic molecular beams (SMBs) both with and without radio frequency (RF) plasma excitation. For comparison, MnO(001) films were grown by reactive MBE using O2 from a leak valve. X-ray photoelectron spectroscopy confirmed the Mn2+ oxidation state and 10%–15% excess oxygen near the growth surface. Reflection high-energy electron diffraction and x-ray diffraction evidenced that the films were rock salt cubic MnO with very strong (001) orientation. High-angle annular dark field scanning transmission electron microscopy with energy-dispersive x-ray spectroscopy demonstrated abrupt MnO/MgO interfaces and indicated [(001)MnO||(001)MgO] epitaxial growth. Ex situ atomic force microscopy of films deposited without RF excitation revealed smooth growth surfaces. An SMB-grown MnO(001) film was converted to Mn3O4 with strong (110) orientation by post-growth exposure to an RF-discharge (RFD) SMB source providing O atoms; the surface of the resultant film contained elongated pits aligned with the MgO110 directions. In contrast, using the RFD-SMB source for growth resulted in MnO(001) films with elongated growth pits and square pyramidal hillocks aligned along the MgO110 and 100 directions, respectively.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    