skip to main content


Title: Mechanical Behavior and Thermal Stability of (AlCrTiZrMo)N/ZrO2 Nano-Multilayered High-Entropy Alloy Film Prepared by Magnetron Sputtering
A new type of high-entropy alloy, a nitride-based (AlCrTiZrMo)N/ZrO2 nano-multilayered film, was designed to investigate the effect of ZrO2 layer thickness on the microstructure, mechanical properties, and thermal stability. The results show that when the thickness of the ZrO2 layer is less than 0.6 nm, it can be transformed into cubic-phase growth under the template effect of the (AlCrTiZrMo)N layer, resulting in an increased hardness. The (AlCrTiZrMo)N/ZrO2 film with a ZrO2 layer thickness of 0.6 nm has the highest hardness and elastic modulus of 35.1 GPa and 376.4 GPa, respectively. As the thickness of the ZrO2 layer further increases, ZrO2 cannot maintain the cubic structure, and the epitaxial growth interface is destroyed, resulting in a decrease in hardness. High-temperature annealing treatments indicate that the mechanical properties of the film decrease slightly after annealing at less than 900 °C for 30 min, while the mechanical properties decrease significantly after annealing for 30 min at 1000–1100 °C. The hardness and elastic modulus after annealing at 900 °C are still 24.5 GPa and 262.3 GPa, showing excellent thermal stability. This conclusion verifies the “template” effect of the nano-multilayered film, which improves the hardness and thermal stability of the high-entropy alloy.  more » « less
Award ID(s):
1809640
NSF-PAR ID:
10343657
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Crystals
Volume:
12
Issue:
2
ISSN:
2073-4352
Page Range / eLocation ID:
232
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A series of (AlCrTiZrV)-Six-N films with different silicon contents were deposited on monocrystalline silicon substrates by direct-current (DC) magnetron sputtering. The films were characterized by the X-ray diffractometry (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and nano-indentation techniques. The effects of the silicon content on the microstructures and mechanical properties of the films were investigated. The experimental results show that the (AlCrTiZrV)N films grow in columnar grains and present a (200) preferential growth orientation. The addition of the silicon element leads to the disappearance of the (200) peak, and the grain refinement of the (AlCrTiZrV)-Six-N films. Meanwhile, the reticular amorphous phase is formed, thus developing the nanocomposite structure with the nanocrystalline structures encapsulated by the amorphous phase. With the increase of the silicon content, the mechanical properties first increase and then decrease. The maximal hardness and modulus of the film reach 34.3 GPa and 301.5 GPa, respectively, with the silicon content (x) of 8% (volume percent). The strengthening effect of the (AlCrTiZrV)-Six-N film can be mainly attributed to the formation of the nanocomposite structure. 
    more » « less
  2.  
    more » « less
  3. Nanoindentation coupled with Atomic Force Microscopy was used to study stiffness, hardness, and the reduced Young’s modulus of reduced graphene oxide. Oxygen reduction on the graphene oxide sample was performed via LightScribe DVD burner reduction, a cost-effective approach with potential for large scale graphene production. The reduction of oxygen in the graphene oxide sample was estimated to about 10 percent using FTIR spectroscopic analysis. Images of the various samples were captured after each reduction cycle using Atomic Force Microscopy. Elastic and spectroscopic analyses were performed on the samples after each oxygen reduction cycle in the LightScribe, thus allowing for a comparison of stiffness, hardness, and the reduced Young’s modulus based on the number of reduction cycles. The highest values obtained were after the fifth and final reduction cycle, yielding a stiffness of 22.4 N/m, a hardness of 0.55 GPa, and a reduced Young’s modulus of 1.62 GPa as compared to a stiffness of 22.8 N/m, a hardness of 0.58 GPa, and a reduced Young’s modulus of 1.84 GPa for a commercially purchased graphene film made by CVD. This data was then compared to the expected values of pristine single layer graphene. Furthermore, two RC circuits were built, one using a parallel plate capacitors made of light scribed graphene on a kapton substrate (LSGC) and a second one using a CVD deposited graphene on aluminum (CVDGC). Their RC time constants and surface charge densities were compared. 
    more » « less
  4. The conformal nanoporous inorganic coatings with accessible pores that are stable under applied thermal and mechanical stresses represent an important class of materials used in the design of sensors, optical coatings, and biomedical systems. Here, we synthesize porous AlOx and ZnO coatings by the sequential infiltration synthesis (SIS) of two types of polymers that enable the design of porous conformal coatings—polymers of intrinsic microporosity (PIM) and block co-polymer (BCP) templates. Using quartz crystal microbalance (QCM), we show that alumina precursors infiltrate both polymer templates four times more efficiently than zinc oxide precursors. Using the quartz crystal microbalance (QCM) technique, we provide a comprehensive study on the room temperature accessibility to water and ethanol of pores in block copolymers (BCPs) and porous polymer templates using polystyrene-block-poly-4-vinyl pyridine (PS75-b-P4VP25) and polymers of intrinsic microporosity (PIM-1), polymer templates modified by swelling, and porous inorganic coatings such as AlOx and ZnO synthesized by SIS using such templates. Importantly, we demonstrate that no structural damage occurs in inorganic nanoporous AlOx and ZnO coatings synthesized via infiltration of the polymer templates during the water freezing/melting cycling tests, suggesting excellent mechanical stability of the coatings, even though the hardness of the inorganic nanoporous coating is affected by the polymer and precursor selections. We show that the hardness of the coatings is further improved by their annealing at 900 °C for 1 h, though for all the cases except ZnO obtained using the BCP template, this annealing has a negligible effect on the porosity of the material, as is confirmed by the consistency in the optical characteristics. These findings unravel new potential for the materials being used across various environment and temperature conditions.

     
    more » « less
  5. Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 (LLZTO) is a promising inorganic solid electrolyte due to its high Li + conductivity and electrochemical stability for all-solid-state batteries. Mechanical characterization of LLZTO is limited by the synthesis of the condensed phase. Here we systematically measure the elastic modules, hardness, and fracture toughness of LLZTO polycrystalline pellets of different densities using the customized environmental nanoindentation. The LLZTO samples are sintered using the hot-pressing method with different amounts of Li 2 CO 3 additives, resulting in the relative density of the pellets varying from 83% to 98% and the largest grain size of 13.21 ± 5.22 μm. The mechanical properties show a monotonic increase as the sintered sample densifies, elastic modulus and hardness reach 158.47 ± 10.10 GPa and 11.27 ± 1.38 GPa, respectively, for LLZTO of 98% density. Similarly, fracture toughness increases from 0.44 to 1.51 MPa⋅m 1/2 , showing a transition from the intergranular to transgranular fracture behavior as the pellet density increases. The ionic conductivity reaches 4.54 × 10 −4 S/cm in the condensed LLZTO which enables a stable Li plating/stripping in a symmetric solid-state cell for over 100 cycles. This study puts forward a quantitative study of the mechanical behavior of LLZTO of different microstructures that is relevant to the mechanical stability and electrochemical performance of all-solid-state batteries. 
    more » « less