skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The effects of high-pressure annealing on magnetostructural transitions and magnetoresponsive properties in stoichiometric MnCoGe
In this study, phase transitions (structural and magnetic) and associated magnetocaloric properties of stoichiometric MnCoGe have been investigated as a function of annealing pressure. Metastable phases were generated by annealing at 800 °C followed by rapid cooling under pressures up to 6.0 GPa. The x-ray diffraction results reveal that the crystal cell volume of the metastable phases continuously decreases with increasing thermal processing pressure, leading to a decrease in the structural transition temperature. The magnetic and structural transitions merge and form a first-order magnetostructural transition between the ferromagnetic orthorhombic and paramagnetic hexagonal phases over a broad temperature range (>80 K) spanning room temperature, yielding considerable magnetic entropy changes. These findings demonstrate the utility of thermal processing under high pressure, i.e., high-pressure annealing, to control the magnetostructural transitions and associated magnetocaloric properties of MnCoGe without altering its chemical composition.  more » « less
Award ID(s):
1904636
PAR ID:
10593722
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
135
Issue:
21
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Metastable phases were formed in Mn1−xCoxNiGe (x=0.05 and 0.08) by annealing at 800 °C followed by rapid cooling, i.e., quenching, at ambient pressure (P=0) and under a pressure of P=3.5 GPa, and their phase transitions and associated magnetocaloric properties were investigated. The crystal cell volumes of the metastable phases decreased, and their structural transitions significantly shifted to lower temperatures relative to those of the slow-cooled compounds, with a greater reduction observed in the samples where the rapid cooling occurred under high pressures. The magnetic and structural transitions coupled to form a magnetostructural transition in the metastable phases, resulting in large magnetic entropy changes up to −79.6 J kg−1 K−1 (x=0.08) for a 7-T field change. The experimental results demonstrate thermal quenching and high-pressure annealing as alternative methods to create magnetostructural transitions, without modifying the compositions of the materials. 
    more » « less
  2. The effects of doping, hydrostatic pressure, and thermal quenching on the phase transitions and magnetocaloric properties of the Mn1−xCoxNiGe system have been investigated. Cobalt doping on the Mn site shifted the martensitic structural transition toward lower temperature until it was ultimately absent, leaving only a magnetic transition from a ferromagnetic (FM) to a paramagnetic (PM) state in the high-temperature hexagonal phase. Co-occurrence of the magnetic and structural transitions to form a first-order magnetostructural transition (MST) from the FM orthorhombic to the PM hexagonal phase was observed in samples with 0.05 < x < 0.20. An additional antiferromagnetic–ferromagnetic-like transition was observed in the martensite phase for 0.05 < x < 0.10, which gradually vanished with increasing Co concentration (x > 0.10) or magnetic field (H > 0.5 T). The application of external hydrostatic pressure shifted the structural transition to lower temperature until an MST was formed in samples with x = 0.03 and 0.05, inducing large magnetic entropy changes up to −80.3 J kg−1 K−1 (x = 0.03) for a 7-T field change under 10.6-kbar pressure. Similar to the effects of the application of hydrostatic pressure, an MST was formed near room temperature in the sample with x = 0.03 by annealing at high temperature (1200 °C) followed by quenching, resulting in a large magnetic entropy change of −56.2 J kg−1 K−1. These experimental results show that the application of pressure and thermal quenching, in addition to compositional variations, are effective methods to create magnetostructural transitions in the MnNiGe system, resulting in large magnetocaloric effects. 
    more » « less
  3. Promising materials for magnetic refrigeration and thermomagnetic power generation often display strong coupling between magnetism and structure. It has been previously proposed that MnCoP exhibits this strong coupling, contributing to its substantial magnetocaloric effect near TC = 578K. Here, we show from temperature-dependent synchrotron x-ray diffraction that MnCoP displays a discontinuity in the thermal expansion at TC, with spontaneous magnetostriction that is positive in the a direction and negative in the b direction, highlighting the anisotropic nature of the magnetostructural coupling. Varying the Mn:Co ratio of Mn2−xCoxP within the range of 0.6 ≤ x ≤ 1.4 allows the magnetic properties to be tuned. TC decreases as the composition deviates from stoichiometric MnCoP, as does the saturation magnetization. The magnitude of the magnetocaloric effect, |ΔSM|, decreases as well, due to broadening of the magnetic transition. The large reversible change in magnetization ΔM accessible over a small temperature range under moderate magnetic fields makes these materials promising for thermomagnetic power generation from waste heat. 
    more » « less
  4. The MAB phases are atomically layered, ternary or quaternary transition metal (M) borides (TMBs), with the general formula (MB)2 zAx(MB2)y( z = 1–2; x = 1–2; y = 0–2), whose structures are composed of a transition M-B sublattices interleaved by A-atom (A = Al,Zn) mono- or bilayers. Most of the MAB phases were discovered before the 1990s, but recent discoveries of intriguing magnetocaloric properties, mechanical deformation behaviour, catalytic properties, and high-temperature oxidation resistance has led to their ‘re-discovery’. Herein, MAB phase synthesis is reviewed and their magnetic, electronic, thermal, and mechanical properties are summarized. Because the M-B layers in the MAB phases structurally resemble their corresponding binaries of the same M:B stoichiometry, the effects of the A-layers on properties are discussed. Inconsistencies in the literature are critically assessed to gain insights on the processing-structure-property relations, suggest fruitful avenues for future research, and identify limitations for prospective applications. 
    more » « less
  5. The interplay between magnetism and quantum effects has motivated several thermoelectric studies on iron‐telluride yet with little insight on the anomalous features in transport properties near magnetostructural transition temperature (≈70 K). A detailed investigation is carried out on Fe1.1Te by characterizing magnetic, heat capacity, galvanomagnetic, and thermoelectric transport properties to understand the electronic, magnetic, and structural origin of those anomalies. The magnetic susceptibility indicates a bicollinear stripe and short‐range ordering in the antiferromagnetic and paramagnetic domains, respectively. Hall conductivity and transverse magnetoresistance reveal a multicarrier transport impacted by spin fluctuations and magnons. Contributions from phonon‐drag and magnon‐drag are evaluated to understand the origin of the broad peak in antiferromagnetic thermopower. The peak at ≈50 K and the insignificant entropy contribution from the magnonic heat capacity support the phonon‐drag as the origin. The field‐dependent enhancement of thermal conductivity must be associated with field‐dependent spin‐phonon coupling modification. The field‐induced thermopower reduction can be attributed to the suppression of magnons or paramagnons, as evidenced by the magnetic susceptibility data. Above 70 K, the thermal conductivity drops sharply due to the structural change modifying phonon modes. Understanding these properties originated from the spin, and quantum effects are instrumental for designing high‐performance spin‐driven thermoelectrics. 
    more » « less