skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Acoustic source localization with the angular spectrum approach in continuously stratified media
The angular spectrum approach (ASA)—a frequency domain method to calculate the acoustic field—enables highly efficient passive source localization and modeling forward propagation in homogeneous media. If the medium is continuously stratified, a first-order analytical solution may be obtained for the field at arbitrary depth. Simulations show that the proposed stratified ASA solution enables accurate source localization as compared to the uncorrected ASA (error from 1.2 ± 0.3 to 0.49 ± 0.3 wavelengths) at scalings relevant to biomedical, underwater, and atmospheric acoustic applications, and requiring milliseconds on nonspecialized hardware. The results suggest the proposed correction enables efficient and accurate localization in stratified environments.  more » « less
Award ID(s):
1830577
PAR ID:
10593741
Author(s) / Creator(s):
;
Publisher / Repository:
Acoustical Society of America (ASA)
Date Published:
Journal Name:
The Journal of the Acoustical Society of America
Volume:
148
Issue:
4
ISSN:
0001-4966
Format(s):
Medium: X Size: p. EL333-EL339
Size(s):
p. EL333-EL339
Sponsoring Org:
National Science Foundation
More Like this
  1. Pipe-type cable systems, including high-pressure fluid-filled (HPFF) and high-pressure gas-filled cables, are widely used for underground high-voltage transmission. These systems consist of insulated conductor cables within steel pipes, filled with pressurized fluids or gases for insulation and cooling. Despite their reliability, faults can occur due to insulation degradation, thermal expansion, and environmental factors. As many circuits exceed their 40-year design life, efficient fault localization becomes crucial. Fault location involves prelocation and pinpointing. Therefore, a novel pinpointing approach for pipe-type cable systems is proposed, utilizing accelerometers mounted on a steel pipe to capture fault-induced acoustic signals and employing the time difference of arrival method to accurately pinpoint the location of the fault. The experimental investigations utilized a scaled-down HPFF pipe-type cable system setup, featuring a carbon steel pipe, high-frequency accelerometers, and both mechanical and capacitive discharge methods for generating acoustic pulses. The tests evaluated the propagation velocity, attenuation, and pinpointing accuracy with the pipe in various embedment conditions. The experimental results demonstrated accurate fault pinpointing in the centimeter range, even when the pipe was fully embedded, with the acoustic pulse velocities aligning closely with the theoretical values. These experimental investigation findings highlight the potential of this novel acoustic pinpointing technique to improve fault localization in underground systems, enhance grid reliability, and reduce outage duration. Further research is recommended to validate this approach in full-scale systems. 
    more » « less
  2. Contactless ultrasound power transfer (UPT) has emerged as one of the promising techniques for wireless power transfer. Physical processes supporting UPT include the vibrations at a transmitting/acoustic source element, acoustic wave propagation, piezoelectric transduction of elastic vibrations at a receiving element, and acoustic-structure interactions at the surfaces of the transmitting and receiving elements. A novel mechanism using a high-intensity focused ultrasound (HIFU) transmitter is proposed for enhanced power transfer in UPT systems. The HIFU source is used for actuating a finite-size piezoelectric disk receiver. The underlying physics of the proposed system includes the coupling of the nonlinear acoustic field with structural responses of the receiver, which leads to spatial resonances and the appearance of higher harmonics during wave propagation in a medium. Acoustic nonlinearity due to wave kinematics in the HIFU-UPT system is modeled by taking into account the effects of diffraction, absorption, and nonlinearity in the medium. Experimentally-validated acoustic-structure interaction formulation is employed in a finite element based multiphysics model. The results show that the HIFU high-level excitation can cause disproportionately large responses in the piezoelectric receiver if the frequency components in the nonlinear acoustic field coincide with the resonant frequencies of the receiver. 
    more » « less
  3. We propose a deep learning solution to the inverse problem of localizing sources of network diffusion. Invoking graph signal processing (GSP) fundamentals, the problem boils down to blind estimation of a diffusion filter and its sparse input signal encoding the source locations. While the observations are bilinear functions of the unknowns, a mild requirement on invertibility of the graph filter enables a convex reformulation that we solve via the alternating-direction method of multipliers (ADMM). We unroll and truncate the novel ADMM iterations, to arrive at a parameterized neural network architecture for Source Localization on Graphs (SLoG-Net), that we train in an end-to-end fashion using labeled data. This way we leverage inductive biases of a GSP model-based solution in a data-driven trainable parametric architecture, which is interpretable, parameter efficient, and offers controllable complexity during inference. Experiments with simulated data corroborate that SLoG-Net exhibits performance in par with the iterative ADMM baseline, while attaining significant (post-training) speedups. 
    more » « less
  4. Defect localization in homogeneous structures using ultrasonic waves is relatively easy to implement. However, locating defects in heterogeneous structures made of different materials can be challenging. This is because complicated reflections, refractions and scatterings occur when ultrasonic waves pass through the interfaces between two dissimilar materials of the heterogeneous structures. To address this issue, a localization methodology based on geometric phase change – index (GPC-I), derived from topological acoustic (TA) sensing, is proposed to adapt to the complicated scenarios when defects are present in heterogeneous plate structures. The GPC-I is adopted as the damage index (DI) to present the possibility of defects appearing on different acoustic sensing paths. A maximum peak value-dependent threshold in GPC-I plots (GPC-I vs. sensor sites) is defined to filter out unreliable sensing paths resulting from the heterogeneity. Different sensing modes (I and II) are combined to comprehensively provide a more reliable and accurate localization framework. Numerical modeling carried out by Abaqus/CAE software verifies the proposed GPC-I based localization technique. Comparison results among GPC-I and other two commonly used acoustic parameters—wave velocity differences (VD) and amplitude ratio (AR) (or wave attenuation) show that the GPC-I has superiority with higher sensitivity and stability for defect localization. This work can provide promising guidance for localizing defects in complex heterogeneous plate structures used in real-world engineering applications. 
    more » « less
  5. Consider the scattering of a time-harmonic acoustic plane wave by a bounded elastic obstacle which is immersed in a homogeneous acoustic medium. This paper is concerned with an inverse acoustic-elastic interaction problem, which is to determine the location and shape of the elastic obstacle by using either the phased or phaseless far-field data. By introducing the Helmholtz decomposition, the model problem is reduced to a coupled boundary value problem of the Helmholtz equations. The jump relations are studied for the second derivatives of the single-layer potential in order to deduce the corresponding boundary integral equations. The well-posedness is discussed for the solution of the coupled boundary integral equations. An efficient and high order Nyström-type discretization method is proposed for the integral system. A numerical method of nonlinear integral equations is developed for the inverse problem. For the case of phaseless data, we show that the modulus of the far-field pattern is invariant under a translation of the obstacle. To break the translation invariance, an elastic reference ball technique is introduced. We prove that the inverse problem with phaseless far-field pattern has a unique solution under certain conditions. In addition, a numerical method of the reference ball technique based nonlinear integral equations is proposed for the phaseless inverse problem. Numerical experiments are presented to demonstrate the effectiveness and robustness of the proposed methods. 
    more » « less