skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neglecting non‐vascular plants leads to underestimation of grassland plant diversity loss under experimental nutrient addition
Abstract Nutrient availability and grazing are known as main drivers of grassland plant diversity, and increased nutrient availability and long‐term cessation of grazing often decrease local‐scale plant diversity. Experimental tests of mechanisms determining plant diversity focus mainly on vascular plants (VP), whereas non‐vascular plants (NVP, here bryophytes) have been ignored. It is therefore not known how the current models based on VPs predict the rates of total (NVP + VP) losses in plant diversity.Here we used plant community data, including VPs and NVPs, from nine sites in Europe and North America and belonging to the Nutrient Network experiment, to test whether neglecting NVPs leads to biased estimates of plant diversity loss rates. The plant communities were subjected to factorial addition of nitrogen (N), phosphorus (P), potassium with micronutrients (K), as well as a grazing exclusion combined with multi‐nutrient fertilization (NPK) treatment.We found that nutrient additions reduced both NVP and VP species richness, but the effects on NVP species richness were on average stronger than on VPs: NVP species richness decreased 67%, while VP species richness decreased 28%, causing their combined richness to decrease 38% in response to multi‐nutrient (NPK) fertilization. Thus, VP diversity alone underestimated total plant diversity loss by 10 percentage points.Although NVP and VP species diversities similarly declined in response to N and NPKfertilizations, the evenness of NVPs increased and that of VPs remained unchanged. NP, NPKfertilization and NPKfertilization combined with grazing exclusion, associated with decreasing light availability at ground level, led to the strongest loss of NVP species or probability of NVP presence. However, grazing did not generally mitigate the fertilization effects.Synthesis. In nine grassland sites in Europe and North America, nutrient addition caused a larger relative decline in non‐vascular plant (NVP) than vascular plant species richness. Hence, not accounting for NVPs can lead to underestimation of losses in plant diversity in response to continued nutrient pollution of grasslands.  more » « less
Award ID(s):
1831944
PAR ID:
10593767
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
Volume:
113
Issue:
7
ISSN:
0022-0477
Format(s):
Medium: X Size: p. 1672-1685
Size(s):
p. 1672-1685
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Declines in grassland diversity in response to nutrient addition are a general consequence of global change. This decline in species richness may be driven by multiple underlying processes operating at different time‐scales. Nutrient addition can reduce diversity by enhancing the rate of local extinction via competitive exclusion, or by reducing the rate of colonization by constraining the pool of species able to colonize under new conditions. Partitioning net change into extinction and colonization rates will better delineate the long‐term effect of global change in grasslands.We synthesized changes in richness in response to experimental fertilization with nitrogen, phosphorus and potassium with micronutrients across 30 grasslands. We quantified changes in local richness, colonization, and extinction over 8–10 years of nutrient addition, and compared these rates against control conditions to isolate the effect of nutrient addition from background dynamics.Total richness at steady state in the control plots was the sum of equal, relatively high rates of local colonization and extinction. On aggregate, 30%–35% of initial species were lost and the same proportion of new species were gained at least once over a decade. Absolute turnover increased with site‐level richness but was proportionately greater at lower‐richness sites relative to starting richness. Loss of total richness with nutrient addition, especially N in combination with P or K, was driven by enhanced rates of extinction with a smaller contribution from reduced colonization. Enhanced extinction and reduced colonization were disproportionately among native species, perennials, and forbs. Reduced colonization plateaued after the first few (<5) years after nutrient addition, while enhanced extinction continued throughout the first decade.Synthesis. Our results indicate a high rate of colonizations and extinctions underlying the richness of ambient communities and that nutrient enhancement drives overall declines in diversity primarily by exclusion of previously established species. Moreover, enhanced extinction continues over long time‐scales, suggesting continuous, long‐term community responses and a need for long‐term study to fully realize the extinction impact of increased nutrients on grassland composition. 
    more » « less
  2. Abstract Global changes such as nitrogen (N) enrichment and elevated carbon dioxide (CO2) are known to exacerbate biodiversity loss in grassland ecosystems. They do so by modifying processes whose strength may vary at different spatial scales. Yet, whether and how global changes impact plant diversity at different spatial scales remains elusive.We collected data on species presence and cover at a high resolution in the third decade of a long‐term temperate grassland biodiversity—global change experiment. Based on the data, we constructed species—area relationships across three spatial orders of magnitude (from 0.01 to 3.24 m2) and compared them for the different global change treatments.We found that N enrichment, both under ambient and elevated CO2levels, decreased species richness across almost all spatial scales, with proportional decreases being largest at the smallest spatial scales. Elevated CO2also reduced richness at both ambient and enriched N supply rates but did so proportionally across all spatial scales. Suppression of diversity was stronger at all scales for diversity indices that include relative abundances than for species richness. Taken together, these results suggest that CO2and N are re‐organizing this grassland system by increasingly favouring, at fine scales, a small subset of dominant species.Synthesis: Our results highlight the role of spatial scales in influencing biodiversity loss, especially when it is driven by anthropogenic resource changes that might influence species interactions differently across spatial scales. 
    more » « less
  3. Abstract We contrast the response of arthropod abundance and composition to bison grazing lawns during a drought and non‐drought year, with an emphasis on acridid grasshoppers, an important grassland herbivore.Grazing lawns are grassland areas where regular grazing by mammalian herbivores creates patches of short‐statured, high nutrient vegetation. Grazing lawns are predictable microsites that modify microclimate, plant structure, community composition, and nutrient availability, with likely repercussions for arthropod communities.One year of our study occurred during an extreme drought. Drought mimics some of the effects of mammalian grazers: decreasing above‐ground plant biomass while increasing plant foliar percentage nitrogen.We sampled arthropods and nutrient availability on and nearby (“off”) 10 bison‐grazed grazing lawns in a tallgrass prairie in NE Kansas. Total grasshopper abundance was higher on grazing lawns and the magnitude of this difference increased in the wetter year of 2019 compared to 2018, when drought led to high grass foliar nitrogen concentrations on and off grazing lawns. Mixed‐feeding grasshopper abundances were consistently higher on grazing lawns while grass‐feeder and forb‐feeder abundances were higher on lawns only in 2019, the wetter year. In contrast, the abundance of other arthropods (e.g., Hemiptera, Hymenoptera, and Araneae) did not differ on and off lawns, but increased overall in 2019, relative to the drought of 2018.Understanding these local scale patterns of abundances and community composition improves predictability of arthropod responses to ongoing habitat change. 
    more » « less
  4. Gallery, Rachel (Ed.)
    Abstract Livestock grazing has been shown to alter the structure and functions of grassland ecosystems. It is well acknowledged that grazing pressure is one of the strongest drivers of ecosystem‐level effects of grazing, but few studies have assessed how grazing pressure impacts grassland biodiversity and ecosystem multifunctionality (EMF).Here, we assessed how different metrics of biodiversity (i.e., plants and soil microbes) andEMFresponded to seven different grazing treatments based on an 11‐year field experiment in semi‐arid Inner Mongolian steppe.We found that soil organic carbon, plant‐available nitrogen and plant functional diversity all decreased even at low grazing pressure, while above‐ground primary production and bacterial abundance decreased only at high levels of grazing pressure.Structural equation models revealed thatEMFwas driven by direct effects of grazing, rather than the effects of grazing on plant or microbial community composition. Grazing effects on plant functional diversity and soil microbial abundance did have moderate effects onEMF, while plant richness did not.Synthesis. Our results showed ecosystem functions differ in their sensitivity to grazing pressure, requiring a low grazing threshold to achieve multiple goals in the Eurasian steppe. Aplain language summaryis available for this article. 
    more » « less
  5. Despite their ecological significance, non‐vascular photoautotrophs (NVPs) are frequently excluded from ecological experimental studies, leading to a limited comprehension of how their communities are affected by the ecosystem dynamics and an underestimation of their role in ecosystem functioning. We studied the impact of vascular plant taxonomic and functional diversity on three groups of ground NVPs (lichens, bryophytes, and cyanobacteria) within one of the longest‐running plant biodiversity experiments (Biodiversity and Ecosystem Function at Cedar Creek Ecosystem Science Reserve). Utilizing the permanent plot framework of this experiment, we analyzed the effects of almost 30 years of treatment across various levels of vascular plant taxonomic and functional diversity on NVPs. For each diversity level we documented NVP cover and richness. Using generalized linear models we evaluated the effect of vascular plant taxonomic and functional diversity, as well as environmental factors affected by vascular diversity (such as vascular plant cover, light penetration, soil nutrient content, and microtopography) on NVP richness and cover. Using these models, we conducted structural equation modeling analyses (SEM) that allowed us to differentiate the direct and indirect impacts of vascular plant taxonomic and functional diversity on NVPs. Our results showed that both lichen and bryophyte richness and cover decreased with higher vascular plant taxonomic and functional diversity, while cyanobacteria cover increased as a function of the same parameters. We also showed that microtopography serves as better predictor for lichens and bryophytes, while nutrient‐related factors perform better as predictors for cyanobacteria. Additionally, our findings indicate that NVP cover ranged from 0.001% to 100% (mean 15%) in the surveyed plots, representing a major, still ignored, component of the experimental plots. This study shows that vascular plant diversity directly and indirectly affects NVP communities, but the consequences of these effects at community and ecosystem levels are still to be explored. 
    more » « less