Abstract Type Ia supernovae (SNe Ia), critical for studying cosmic expansion, arise from thermonuclear explosions of white dwarfs, but their precise progenitor pathways remain unclear. Growing evidence supports the “double-degenerate scenario,” where two white dwarfs interact. The absence of nondegenerate companions capable of explaining the observed SN Ia rate, along with observations of hypervelocity white dwarfs, interpreted as surviving companions of such systems, provide compelling evidence for this scenario. Upcoming millihertz gravitational-wave observatories like the Laser Interferometer Space Antenna (LISA) are expected to detect thousands of double-degenerate systems, though the most compact known candidate SN Ia progenitors produce marginally detectable signals. Here, we report observations of ATLAS J1138-5139, a binary white dwarf system with an orbital period of just 28 minutes. Our analysis reveals a 1M☉carbon–oxygen white dwarf accreting from a high-entropy helium-core white dwarf. Given its mass, the accreting carbon–oxygen white dwarf is poised to trigger a typical-luminosity SN Ia within a few million years, to evolve into a stably transferring AM Canum Venaticorum (or AM CVn) system, or undergo a merger into a massive white dwarf. ATLAS J1138-5139 provides a rare opportunity to calibrate binary evolution models by directly comparing observed orbital parameters and mass-transfer rates closer to merger than any known SN Ia progenitor. Its compact orbit ensures detectability by LISA, demonstrating the potential of millihertz gravitational-wave observatories to reveal a population of SN Ia progenitors on a Galactic scale, paving the way for multimessenger studies offering insights into the origins of these cosmologically significant explosions.
more »
« less
Electromagnetic Characterization of the LISA Verification Binary ZTF J0526+5934
Abstract We present an analysis of new and archival data to the 20.506 minute LISA verification binary J052610.42+593445.32 (J0526+5934). Our joint spectroscopic and photometric analysis finds that the binary contains an unseenM1= 0.89 ± 0.11M⊙CO-core white dwarf primary with anM2= 0.38 ± 0.07M⊙post-core-burning subdwarf, or low-mass white dwarf, companion. Given the short orbital period and relatively large total binary mass, we find that LISA will detect this binary with signal-to-noise ratio 44 after 4 yr of observations. J0526+5934 is expected to merge within 1.8 ± 0.3 Myr and likely result in a D6scenario Type Ia supernova or form a He-rich star that will evolve into a massive single white dwarf.
more »
« less
- Award ID(s):
- 2107982
- PAR ID:
- 10594096
- Publisher / Repository:
- Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 959
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 114
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The discovery and localization of FRB 20240209A by the Canadian Hydrogen Intensity Mapping Fast Radio Burst (CHIME/FRB) experiment marks the first repeating FRB localized with the CHIME/FRB Outriggers and adds to the small sample of repeating FRBs with associated host galaxies. Here we present Keck and Gemini observations of the host that reveal a redshiftz = 0.1384 ± 0.0004. We perform stellar population modeling to jointly fit the optical through mid-IR data of the host and infer a median stellar mass log(M*/M⊙) = 11.35 ± 0.01 and a mass-weighted stellar population age ~11 Gyr, corresponding to the most massive and oldest FRB host discovered to date. Coupled with a star formation rate <0.31M⊙yr−1, the specific star formation rate <10−11.9yr−1classifies the host as quiescent. Through surface brightness profile modeling, we determine an elliptical galaxy morphology, marking the host as the first confirmed elliptical FRB host. The discovery of a quiescent early-type host galaxy within a transient class predominantly characterized by late-type star-forming hosts is reminiscent of short-duration gamma-ray bursts, Type Ia supernovae, and ultraluminous X-ray sources. Based on these shared host demographics, coupled with a large offset as demonstrated in our companion Letter, we conclude that preferred sources for FRB 20240209A include magnetars formed through merging binary neutron stars/white dwarfs or the accretion-induced collapse of a white dwarf, or a luminous X-ray binary. Together with FRB 20200120E localized to a globular cluster in M81, our findings provide strong evidence that some fraction of FRBs may arise from a process distinct from the core collapse of massive stars.more » « less
-
Abstract Many studies have recently documented the orbital response of eccentric binaries accreting from thin circumbinary disks, characterizing the change in the binary semimajor axis and eccentricity. We extend these calculations to include the precession of the binary’s longitude of periapse induced by the circumbinary disk, and we characterize this precession continuously with binary eccentricityebfor equal mass components. This disk-induced apsidal precession is prograde with a weak dependence on the binary eccentricity wheneb≲ 0.4 and decreases approximately linearly foreb≳ 0.4; yet at allebbinary precession is faster than the rates of change to the semimajor axis and eccentricity by an order of magnitude. We estimate that such precession effects are likely most important for subparsec separated binaries with masses ≲107M⊙, like LISA precursors. We find that accreting, equal-mass LISA binaries withM< 106M⊙(and the most massiveM∼ 107M⊙binaries out toz∼ 3) may acquire a detectable phase offset due to the disk-induced precession. Moreover, disk-induced precession can compete with general relativistic precession in a vacuum, making it important for observer-dependent electromagnetic searches for accreting massive binaries—like Doppler boost and binary self-lensing models—after potentially only a few orbital periods.more » « less
-
Abstract The exploration of dark sector interactions via gravitational waves (GWs) from binary inspirals has been a subject of recent interest. We study dark forces using extreme mass ratio inspirals (EMRIs), pointing out two issues of interest. Firstly, the innermost stable circular orbit (ISCO) of the EMRI, which sets the characteristic length scale of the system and hence the dark force range to which it exhibits enhanced sensitivity, probes force mediator masses that complement those studied with supermassive black hole (SMBH) or neutron star binaries. The LISA mission (the proposedμAres detector) will probe mediators with massesmV∼ 10-16 eV (mV∼ 10-18 eV), corresponding to ISCOs of 106M⊙(108M⊙) central SMBHs. Secondly, while the sensitivity to dark couplings is typically limited by the uncertainty in the binary component masses, independent mass measurements of the central SMBH through reverberation mapping campaigns or the motion of dynamical tracers enable one to break this degeneracy. Our results therefore highlight the necessity for coordinated studies, loosely referred to as “multimessenger”, between futureμHz- mHz GW observatories and ongoing and forthcoming SMBH mass measurement campaigns, including OzDES-RM, SDSS-RM, and SDSS-V Black Hole Mapper.more » « less
-
Abstract Type Ia supernovae (SNe Ia) are securely understood to come from the thermonuclear explosion of a white dwarf as a result of binary interaction, but the nature of that binary interaction and the secondary object is uncertain. Recently, a double white dwarf model known as the dynamically driven double-degenerate double-detonation (D6) model has become a promising explanation for these events. One realization of this scenario predicts that the companion may survive the explosion and reside within the remnant as a fast moving (Vpeculiar> 1000 km s−1), overluminous (L> 0.1L⊙) white dwarf. Recently, three objects that appear to have these unusual properties have been discovered in the Gaia survey. We obtained photometric observations of the SN Ia remnant SN 1006 with the Dark Energy Camera over four years to attempt to discover a similar star. We present a deep, high-precision astrometric proper-motion survey of the interior stellar population of the remnant. We rule out the existence of a high-proper-motion object consistent with our tested realization of the D6 scenario (Vtransverse> 600 km s−1withmr< 21 corresponding to an intrinsic luminosity ofL> 0.0176L⊙). We conclude that such a star does not exist within the remnant or is hidden from detection by either strong localized dust or the unlikely possibility of ejection from the binary system almost parallel to the line of sight.more » « less
An official website of the United States government

