skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In Vitro Model Integrating Substrate Stiffness and Flow to Study Endothelial Cell Responses
We present an innovative in vitro model aimed at investigating the combined effects of tissue rigidity and shear stress on endothelial cell (EC) function, which are crucial for understanding vascular health and the onset of diseases such as atherosclerosis. Traditionally, studies have explored the impacts of shear stress and substrate stiffness on ECs, independently. However, this integrated system combines these factors to provide a more precise simulation of the mechanical environment of the vasculature. The objective is to examine EC mechanotransduction across various tissue stiffness levels and flow conditions using human ECs. We detail the protocol for synthesizing gelatin methacrylate (GelMA) hydrogels with tunable stiffness and seeding them with ECs to achieve confluency. Additionally, we describe the design and assembly of a cost-effective flow chamber, supplemented by computational fluid dynamics simulations, to generate physiological flow conditions characterized by laminar flow and appropriate shear stress levels. The protocol also incorporates fluorescence labeling for confocal microscopy, enabling the assessment of EC responses to both tissue compliance and flow conditions. By subjecting cultured ECs to multiple integrated mechanical stimuli, this model enables comprehensive investigations into how factors such as hypertension and aging may affect EC function and EC-mediated vascular diseases. The insights gained from these investigations will be instrumental in elucidating the mechanisms underlying vascular diseases and in developing effective treatment strategies.  more » « less
Award ID(s):
1846962
PAR ID:
10594173
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Journal of Visualized Experiments
Date Published:
Journal Name:
Journal of Visualized Experiments
Issue:
209
ISSN:
1940-087X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mechanical cues from the extracellular matrix (ECM) regulate vascular endothelial cell (EC) morphology and function. Since naturally derived ECMs are viscoelastic, cells respond to viscoelastic matrices that exhibit stress relaxation, in which a cell‐applied force results in matrix remodeling. To decouple the effects of stress relaxation rate from substrate stiffness on EC behavior, we engineered elastin‐like protein (ELP) hydrogels in which dynamic covalent chemistry (DCC) was used to crosslink hydrazine‐modified ELP (ELP‐HYD) and aldehyde/benzaldehyde‐modified polyethylene glycol (PEG‐ALD/PEG‐BZA). The reversible DCC crosslinks in ELP‐PEG hydrogels create a matrix with independently tunable stiffness and stress relaxation rate. By formulating fast‐relaxing or slow‐relaxing hydrogels with a range of stiffness (500–3300 Pa), we examined the effect of these mechanical properties on EC spreading, proliferation, vascular sprouting, and vascularization. The results show that both stress relaxation rate and stiffness modulate endothelial spreading on two‐dimensional substrates, on which ECs exhibited greater cell spreading on fast‐relaxing hydrogels up through 3 days, compared with slow‐relaxing hydrogels at the same stiffness. In three‐dimensional hydrogels encapsulating ECs and fibroblasts in coculture, the fast‐relaxing, low‐stiffness hydrogels produced the widest vascular sprouts, a measure of vessel maturity. This finding was validated in a murine subcutaneous implantation model, in which the fast‐relaxing, low‐stiffness hydrogel produced significantly more vascularization compared with the slow‐relaxing, low‐stiffness hydrogel. Together, these results suggest that both stress relaxation rate and stiffness modulate endothelial behavior, and that the fast‐relaxing, low‐stiffness hydrogels supported the highest capillary density in vivo. 
    more » « less
  2. Glycocalyx (GCX) is a carbohydrate-rich structure that coats the surface of endothelial cells (ECs) and lines the blood vessel lumen. Mechanical perturbations in the vascular environment, such as blood vessel stiffness, can be transduced and sent to ECs through mechanosensors such as GCX. Adverse stiffness alters GCX-mediated mechanotransduction and leads to EC dysfunction and eventually atherosclerotic cardiovascular diseases. To understand GCX-regulated mechanotransduction events, anin vitromodel emulatingin vivovessel conditions is needed. To this end, we investigated the impact of matrix chemical and mechanical properties on GCX expression via fabricating a tunable non-swelling matrix based on the collagen-derived polypeptide, gelatin. To study the effect of matrix composition, we conducted a comparative analysis of GCX expression using different concentrations (60–25,000 μg/mL) of gelatin and gelatin methacrylate (GelMA) in comparison to fibronectin (60 μg/mL), a standard coating material for GCX-related studies. Using immunocytochemistry analysis, we showed for the first time that different substrate compositions and concentrations altered the overall GCX expression on human umbilical vein ECs (HUVECs). Subsequently, GelMA hydrogels were fabricated with stiffnesses of 2.5 and 5 kPa, representing healthy vessel tissues, and 10 kPa, corresponding to diseased vessel tissues. Immunocytochemistry analysis showed that on hydrogels with different levels of stiffness, the GCX expression in HUVECs remained unchanged, while its major polysaccharide components exhibited dysregulation in distinct patterns. For example, there was a significant decrease in heparan sulfate expression on pathological substrates (10 kPa), while sialic acid expression increased with increased matrix stiffness. This study suggests the specific mechanisms through which GCX may influence ECs in modulating barrier function, immune cell adhesion, and mechanotransduction function under distinct chemical and mechanical conditions of both healthy and diseased substrates. 
    more » « less
  3. Discher, Dennis (Ed.)
    Vascular endothelial cells (ECs) have been shown to be mechanoresponsive to the forces of blood flow, including fluid shear stress (FSS), the frictional force of blood on the vessel wall. Recent reports have shown that FSS induces epigenetic changes in chromatin. Epigenetic changes, such as methylation and acetylation of histones, not only affect gene expression but also affect chromatin condensation, which can alter nuclear stiffness. Thus, we hypothesized that changes in chromatin condensation may be an important component for how ECs adapt to FSS. Using both in vitro and in vivo models of EC adaptation to FSS, we observed an increase in histone acetylation and a decrease in histone methylation in ECs adapted to flow as compared with static. Using small molecule drugs, as well as vascular endothelial growth factor, to change chromatin condensation, we show that decreasing chromatin condensation enables cells to more quickly align to FSS, whereas increasing chromatin condensation inhibited alignment. Additionally, we show data that changes in chromatin condensation can also prevent or increase DNA damage, as measured by phosphorylation of γH2AX. Taken together, these results indicate that chromatin condensation, and potentially by extension nuclear stiffness, is an important aspect of EC adaptation to FSS. 
    more » « less
  4. Vascular restenosis is a major complication in recanalized arteries. Nanoparticles (NPs) have shown great promise as delivery systems in advancing strategies to treat such vascular anomalies. By enabling precise targeting, NPs can overcome the challenges of low drug efficacy and off-target effects. Here we present a biomimetic in vitro platform comprised of 3D bioprinting, nanomaterials, and perfusion technologies, to study the use of NP targeting to address endothelial overgrowth. We bioprinted 3D vascular channels at high fidelity, using gelatin methacrylate as bioink, with artery-like stiffness. Human endothelial cells (ECs) were used to endothelialize the printed channels. GFP-labelled superparamagnetic iron oxide NPs (SPIONs), loaded with the Rapamune anti-proliferative drug, were perfused through the bifurcated artery model at physiological rate. Computational modeling predicted greatest level of alterations in wall shear stress in the conduit’s junction with the artery, identifying this region prone to restenosis. A neodymium disc magnet was embedded in the printed tissue to attract the therapeutic SPIONs to the region of high risk. In vitro dynamic culture was conducted for 2 wks. We assessed cell viability, proliferation, and function using AlamarBlue and immunohistochemistry. Results showed significant targeted effect of NP delivery in reducing EC overgrowth. This platform enables design of precise targeting of therapeutics to treat a variety of cardiovascular diseases at a high spatial and temporal control. 
    more » « less
  5. Endothelium health is essential to the regulation of physiological vascular functions. Because of the critical capability of endothelial cells (ECs) to sense and transduce chemical and mechanical signals in the local vascular environment, their dysfunction is associated with a vast variety of vascular diseases and injuries, especially atherosclerosis and subsequent cardiovascular diseases. This review describes the mechanotransduction events that are mediated through ECs, the EC subcellular components involved, and the pathways reported to be potentially involved. Up-to-date research efforts involving in vivo animal models and in vitro biomimetic models are also discussed, including their advantages and drawbacks, with recommendations on future modeling approaches to aid the development of novel therapies targeting atherosclerosis and related cardiovascular diseases. 
    more » « less