Title: Toward transformable photonics: Reversible deforming soft cavities, controlling their resonance split and directional emission
We report on reversible and continuously deformable soft micro-resonators and the control of their resonance split and directional emission. Assisted by computerized holographic-tweezers, functioning as an optical deformer of our device, we gradually deform the shape and change the functionality of a droplet whispering-gallery cavity. For example, we continuously deform hexagonal cavities to rectangular ones and demonstrate switching to directionally emitting mode-of-operation, or splitting a resonant mode to a 10-GHz separated doublet. A continuous trend of improving spatial light modulators and tweezers suggests that our method is scalable and can control the shape and functionality of many individual devices. We also demonstrate optional solidification, proving the feasibility of transformer-enabled applications, including in printing optical circuits and multiwavelength optical networks. more »« less
Mangini, F.; Ferraro, M.; Zitelli, M.; Kalashnikov, V.; Niang, A.; Mansuryan, T.; Frezza, F.; Tonello, A.; Couderc, V.; Aceves, A. B.; et al
(, Scientific Reports)
null
(Ed.)
Abstract We demonstrate a new practical approach for generating multicolour spiral-shaped beams. It makes use of a standard silica optical fibre, combined with a tilted input laser beam. The resulting breaking of the fibre axial symmetry leads to the propagation of a helical beam. The associated output far-field has a spiral shape, independently of the input laser power value. Whereas, with a high-power near-infrared femtosecond laser, a visible supercontinuum spiral emission is generated. With appropriate control of the input laser coupling conditions, the colours of the spiral spatially self-organize in a rainbow distribution. Our method is independent of the laser source wavelength and polarization. Therefore, standard optical fibres may be used for generating spiral beams in many applications, ranging from communications to optical tweezers and quantum optics.
Chen, Zhenzhen; Cai, Zhewei; Liu, Wenbo; Yan, Zijie
(, The Journal of Chemical Physics)
Optical tweezers can control the position and orientation of individual colloidal particles in solution. Such control is often desirable but challenging for single-particle spectroscopy and microscopy, especially at the nanoscale. Functional nanoparticles that are optically trapped and manipulated in a three-dimensional (3D) space can serve as freestanding nanoprobes, which provide unique prospects for sensing and mapping the surrounding environment of the nanoparticles and studying their interactions with biological systems. In this perspective, we will first describe the optical forces underlying the optical trapping and manipulation of microscopic particles, then review the combinations and applications of different spectroscopy and microscopy techniques with optical tweezers. Finally, we will discuss the challenges of performing spectroscopy and microscopy on single nanoparticles with optical tweezers, the possible routes to address these challenges, and the new opportunities that will arise.
Andersen, Trond I.; Gelly, Ryan J.; Scuri, Giovanni; Dwyer, Bo L.; Wild, Dominik S.; Bekenstein, Rivka; Sushko, Andrey; Sung, Jiho; Zhou, You; Zibrov, Alexander A.; et al
(, Nature Communications)
Abstract Techniques to mold the flow of light on subwavelength scales enable fundamentally new optical systems and device applications. The realization of programmable, active optical systems with fast, tunable components is among the outstanding challenges in the field. Here, we experimentally demonstrate a few-pixel beam steering device based on electrostatic gate control of excitons in an atomically thin semiconductor with strong light-matter interactions. By combining the high reflectivity of a MoSe2monolayer with a graphene split-gate geometry, we shape the wavefront phase profile to achieve continuously tunable beam deflection with a range of 10°, two-dimensional beam steering, and switching times down to 1.6 nanoseconds. Our approach opens the door for a new class of atomically thin optical systems, such as rapidly switchable beam arrays and quantum metasurfaces operating at their fundamental thickness limit.
Abstract Photonic devices rarely provide both elaborate spatial control and sharp spectral control over an incoming wavefront. In optical metasurfaces, for example, the localized modes of individual meta-units govern the wavefront shape over a broad bandwidth, while nonlocal lattice modes extended over many unit cells support high quality-factor resonances. Here, we experimentally demonstrate nonlocal dielectric metasurfaces in the near-infrared that offer both spatial and spectral control of light, realizing metalenses focusing light exclusively over a narrowband resonance while leaving off-resonant frequencies unaffected. Our devices attain this functionality by supporting a quasi-bound state in the continuum encoded with a spatially varying geometric phase. We leverage this capability to experimentally realize a versatile platform for multispectral wavefront shaping where a stack of metasurfaces, each supporting multiple independently controlled quasi-bound states in the continuum, molds the optical wavefront distinctively at multiple wavelengths and yet stay transparent over the rest of the spectrum. Such a platform is scalable to the visible for applications in augmented reality and transparent displays.
Tweezers-based nanorobots, optical tweezers in particular, are renowned for their exceptional precision, and among their biomedical applications are cellular manipulation, unzipping DNAs, and elongating polypeptide chains. This thesis introduces a series of Lyapunov-based feedback control frameworks that address both stability and controlled instability for biological manipulation, applied within the context of optical tweezers. At the core of this work are novel controllers that stabilize or destabilize specific molecular configurations, enabling fine manipulation of particles like polystyrene beads and tethered polymers under focused laser beams. Chapter 1 covers the foundational principles and surveys existing literature on the modeling and control of optical tweezers, emphasizing gaps in the stability and instability control of molecular systems. Chapter 2 presents a robust Control Lyapunov Function (CLF) approach, designed to stabilize spherical particles under optical trapping. By formulating a smooth, norm-bounded feedback controller, we achieve lateral stabilization despite external disturbances, using a real-time, static nonlinear programming (NLP) solution. Simulations verify the effectiveness of this CLF framework, even with significant initial displacements from the laser focus and under thermal forces modeled as a white Gaussian noise. Chapter 3 addresses controlled instability through a Control Chetaev Function (CCF) framework, specifically targeting protein unfolding applications. Linearization with respect to the control input facilitates the application of destabilizing universal controls for affine- in-control system dynamics. The resulting CCF-based norm-bounded feedback controller induces system instability by laterally extending the trapped DNA handle, thereby increasing the molecular extension and providing insights into protein denaturation and unfolding pathways. This controller is robust to stochastic thermal forces and optimized for real-time computational efficiency. These Lyapunov and Chetaev-based control designs collectively expand the capabilities of optical tweezers, advancing single-molecule manipulation under both stable and unstable conditions. These findings advance precision nanomanipulation, opening new avenues for exploring the molecular mechanics of protein unfolding and DNA elasticity.
@article{osti_10594242,
place = {Country unknown/Code not available},
title = {Toward transformable photonics: Reversible deforming soft cavities, controlling their resonance split and directional emission},
url = {https://par.nsf.gov/biblio/10594242},
DOI = {10.1063/5.0053154},
abstractNote = {We report on reversible and continuously deformable soft micro-resonators and the control of their resonance split and directional emission. Assisted by computerized holographic-tweezers, functioning as an optical deformer of our device, we gradually deform the shape and change the functionality of a droplet whispering-gallery cavity. For example, we continuously deform hexagonal cavities to rectangular ones and demonstrate switching to directionally emitting mode-of-operation, or splitting a resonant mode to a 10-GHz separated doublet. A continuous trend of improving spatial light modulators and tweezers suggests that our method is scalable and can control the shape and functionality of many individual devices. We also demonstrate optional solidification, proving the feasibility of transformer-enabled applications, including in printing optical circuits and multiwavelength optical networks.},
journal = {APL Photonics},
volume = {6},
number = {7},
publisher = {American Institute of Physics},
author = {Douvidzon, Mark and Maayani, Shai and Nagar, Harel and Admon, Tamir and Shuvayev, Vladimir and Yang, Lan and Deych, Lev and Roichman, Yael and Carmon, Tal},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.