Abstract Enhanced electromagnetic fields within plasmonic nanocavity mode volumes enable multiple significant effects that lead to applications in both the linear and nonlinear optical regimes. In this work, enhanced second‐harmonic generation (SHG) is demonstrated from individual plasmonic nanopatch antennas (NPAs) which are formed by separating silver nanocubes from a smooth gold film using a sub‐10 nm zinc oxide spacer layer. When the NPAs are excited at their fundamental plasmon frequency, a 104‐fold increase in the intensity of the SHG wave is observed. Moreover, by integrating quantum emitters that have an absorption energy at the fundamental frequency, a second‐order nonlinear exciton–polariton strong coupling response is observed with a Rabi splitting energy of 19 meV. The nonlinear frequency conversion using NPAs thus provides an excellent platform for nonlinear control of the light−matter interactions in both weak and strong coupling regimes which will have a great potential for applications in optical engineering and information processing.
more »
« less
Near-field imaging of plasmonic nanopatch antennas with integrated semiconductor quantum dots
Plasmonic nanopatch antennas that incorporate dielectric gaps hundreds of picometers to several nanometers thick have drawn increasing attention over the past decade because they confine electromagnetic fields to grossly sub-diffraction-limited volumes. Substantial control over the optical properties of excitons and color centers confined within these plasmonic cavities has already been demonstrated with far-field optical spectroscopies, but near-field optical spectroscopies are essential for an improved understanding of the plasmon–emitter interaction at the nanoscale. Here, we characterize the intensity and phase-resolved plasmonic response of isolated nanopatch antennas by cathodoluminescence microscopy. Furthermore, we explore the distinction between optical and electron beam spectroscopies of coupled plasmon–exciton heterostructures to identify constraints and opportunities for future nanoscale characterization and control of hybrid nanophotonic structures. While we observe substantial Purcell enhancement in time-resolved photoluminescence spectroscopies, negligible Purcell enhancement is observed in cathodoluminescence spectroscopies of hybrid nanophotonic structures. The substantial differences in measured Purcell enhancement for electron beam and laser excitation can be understood as a result of the different selection rules for these complementary experiments. These results provide a fundamentally new understanding of near-field plasmon–exciton interactions in nanopatch antennas, which is essential for myriad emerging quantum photonic devices.
more »
« less
- Award ID(s):
- 1709612
- PAR ID:
- 10594253
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Photonics
- Volume:
- 6
- Issue:
- 10
- ISSN:
- 2378-0967
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We apply ultrafast nanoscale microscopic imaging and analytical modeling to investigate the coherent field and spin textures of dual plasmonic vortices as a means to design the momentum flow, and spin topology by interaction of their gyrating fields. The ultrafast laser normal incidence illumination by circularly polarized light of two vortex generator structures with variable separations in silver films launches structured surface plasmon polariton fields. Two distinct primary vortices and a third emergent vortex, generated by interaction of the primary vortices and tunable by design of their separation, form through the spin–orbit interaction of light. The gyration of plasmon fields and the consequent vectorial Poynting momentum flow is imaged with sub-optical cycle phase and spatial resolution by interferometric time-resolved two-photon photoemission electron microscopy (ITR-2P-PEEM). The ultrafast imaging and analytical modeling of the interaction of the dual plasmonic vortices examines the nanoscale control of plasmon spin topology and momentum driven transport.more » « less
-
Probe is the core component of an optical scanning probe microscope such as scattering-type scanning near-field optical microscopy (s-SNOM). Its ability of concentrating and localizing light determines the detection sensitivity of nanoscale spectroscopy. In this paper, a novel plasmonic probe made of a gradient permittivity material (GPM) is proposed and its nanofocusing performance is studied theoretically and numerically. Compared with conventional plasmonic probes, this probe has at least two outstanding advantages: First, it doesn't need extra structures for surface plasmon polaritons (SPPs) excitation or localized surface plasmon resonance (LSPR), simplifying the probe system; Second, the inherent nanofocusing effects of the conical probe structure can be further reinforced dramatically by designing the distribution of the probe permittivity. As a result, the strong near-field enhancement and localization at the tip apex improve both spectral sensitivity and spatial resolution of a s-SNOM. We also numerically demonstrate that a GPM probe as well as its enhanced nanofocusing effects can be realized by conventional semiconductor materials with designed doping distributions. The proposed novel plasmonic probe promises to facilitate subsequent nanoscale spectroscopy applications.more » « less
-
Abstract Designing broadband enhanced chirality is of strong interest to the emerging fields of chiral chemistry and sensing, or to control the spin orbital momentum of photons in recently introduced nanophotonic chiral quantum and classical optical applications. However, chiral light‐matter interactions have an extremely weak nature, are difficult to control and enhance, and cannot be made tunable or broadband. In addition, planar ultrathin nanophotonic structures to achieve strong, broadband, and tunable chirality at the technologically important visible to ultraviolet spectrum still remain elusive. Here, these important problems are tackled by experimentally demonstrating and theoretically verifying spectrally tunable, extremely large, and broadband chiroptical response by nanohelical metamaterials. The reported new designs of all‐dielectric and dielectric‐metallic (hybrid) plasmonic metamaterials permit the largest and broadest ever measured chiral Kuhn's dissymmetry factor achieved by a large‐scale nanophotonic structure. In addition, the strong circular dichroism of the presented bottom‐up fabricated optical metamaterials can be tuned by varying their dimensions and proportions between their dielectric and plasmonic helical subsections. The currently demonstrated ultrathin optical metamaterials are expected to provide a substantial boost to the developing field of chiroptics leading to significantly enhanced and broadband chiral light‐matter interactions at the nanoscale.more » « less
-
The ability of nanophotonic cavities to confine and store light to nanoscale dimensions has important implications for enhancing molecular, excitonic, phononic, and plasmonic optical responses. Spectroscopic signatures of processes that are ordinarily exceedingly weak such as pure absorption and Raman scattering have been brought to the single-particle limit of detection, while new emergent polaritonic states of optical matter have been realized through coupling material and photonic cavity degrees of freedom across a wide range of experimentally accessible interaction strengths. In this review, we discuss both optical and electron beam spectroscopies of cavity-coupled material systems in weak, strong, and ultrastrong coupling regimes, providing a theoretical basis for understanding the physics inherent to each while highlighting recent experimental advances and exciting future directions.more » « less
An official website of the United States government
