Nitroxyl (HNO) and hydrogen peroxide have both been implicated in a variety of reactions relevant to environmental and physiological processes and may contribute to a unique, unexplored, pathway for the production of nitrous acid (HONO) in soil. To investigate the potential for this reaction, we report an in-depth investigation of the reaction pathway of H 2 O 2 and HNO forming HONO and water. We find the breaking of the peroxide bond and a coupled proton transfer in the first step leads to hydrogen nitryl (HNO 2 ) and an endogenous water, with an extrapolated NEVPT2 (multireference perturbation theory) barrier of 29.3 kcal mol −1 . The first transition state is shown to possess diradical character linking the far peroxide oxygen to the bridging, reacting, peroxide oxygen. The energy of this first step, when calculated using hybrid density functional theory, is shown to depend heavily on the amount of Hartree–Fock exchange in the functional, with higher amounts leading to a higher barrier and more diradical character. Additionally, high amounts of spin contamination cause CCSD(T) to significantly overestimate the TS1 barrier with a value of 36.2 kcal mol −1 when using the stable UHF wavefunction as the reference wavefunction. However, when using the restricted Hartree–Fock reference wavefunction, the TS1 CCSD(T) energy is lowered to yield a barrier of 31.2 kcal mol −1 , in much better agreement with the NEVPT2 result. The second step in the reaction is the isomerization of HNO 2 to trans -HONO through a Grotthuss-like mechanism accepting a proton from and donating a proton to the endogenous water. This new mechanism for the isomerization of HNO 2 is shown to have an NEVPT2 barrier of 23.3 kcal mol −1 , much lower than previous unimolecular estimates not including an explicit water. Finally, inclusion of an additional explicit water is shown to lower the HNO 2 isomerization barrier even further.
more »
« less
This content will become publicly available on February 28, 2026
Chiral π-Conjugated Double Helical Aminyl Diradical with the Triplet Ground State
Abstract We describe effective development of the highly diastereoselective synthesis of double helical tetraamine 2-H2-C2 and propose a mechanism for its formation. The resolution of 2-H2-C2 is facilitated by a high racemization barrier of 43 kcal mol–1 and it is implemented via either a chiral auxiliary or preparative supercritical fluid chromatography. This enables preparation of the first high-spin neutral diradical, with spin density delocalized within an enantiomeric double helical π-system. The presence of two effective 3-electron C–N bonds in the diradical leads to: (1) the triplet (S = 1) high-spin ground state with a singlet-triplet energy gap of 0.4 kcal mol–1 and (2) the long half-life of up to 6 days in 2-MeTHF at room temperature. The diradical possesses a racemization barrier of at least 26 kcal mol–1 in 2-MeTHF at 293 K and chiroptical properties, with an absorption anisotropy factor |g| ≈ 0.005 at 548 nm. These unique magnetic and optical properties of our diradical form the basis for the development of next-generation spintronic devices. 1 Introduction 2 Synthesis and Resolution of the C 2-Symmetric Double Helical Tetraamine 2-H2-C 2 3 Synthesis and Characterization of Neutral High-Spin Aminyl Diradical 22• -C 2 4 Conclusion
more »
« less
- PAR ID:
- 10594329
- Publisher / Repository:
- Thieme
- Date Published:
- Journal Name:
- Synlett
- Volume:
- 36
- Issue:
- 05
- ISSN:
- 0936-5214
- Page Range / eLocation ID:
- 431 to 437
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The anionic products following (H + H + ) abstraction from o -, m -, and p -methylphenol (cresol) are investigated using flowing afterglow-selected ion flow tube (FA-SIFT) mass spectrometry and anion photoelectron spectroscopy (PES). The PES of the multiple anion isomers formed in this reaction are reported, including those for the most abundant isomers, o -, m - and p -methylenephenoxide distonic radical anions. The electron affinity (EA) of the ground triplet electronic state of neutral m -methylenephenoxyl diradical was measured to be 2.227 ± 0.008 eV. However, the ground singlet electronic states of o - and p -methylenephenoxyl were found to be significantly stabilized by their resonance forms as a substituted cyclohexadienone, resulting in measured EAs of 1.217 ± 0.012 and 1.096 ± 0.007 eV, respectively. Upon electron photodetachment, the resulting neutral molecules were shown to have Franck–Condon active ring distortion vibrational modes with measured frequencies of 570 ± 180 and 450 ± 80 cm −1 for the ortho and para isomers, respectively. Photodetachment to excited electronic states was also investigated for all isomers, where similar vibrational modes were found to be Franck–Condon active, and singlet–triplet splittings are reported. The thermochemistry of these molecules was investigated using FA-SIFT combined with the acid bracketing technique to yield values of 341.4 ± 4.3, 349.1 ± 3.0, and 341.4 ± 4.3 kcal mol −1 for the o -, m -, and p -methylenephenol radicals, respectively. Construction of a thermodynamic cycle allowed for an experimental determination of the bond dissociation energy of the O–H bond of m -methylenephenol radical to be 86 ± 4 kcal mol −1 , while this bond is significantly weaker for the ortho and para isomers at 55 ± 5 and 52 ± 5 kcal mol −1 , respectively. Additional EAs and vibrational frequencies are reported for several methylphenyloxyl diradical isomers, the negative ions of which are also formed by the reaction of cresol with O − .more » « less
-
null (Ed.)Of particular interest in radiation-induced charge transfer processes in DNA is the extent of hole localization immediately after ionization and subsequent relaxation. To address this, we considered double stranded oligomers containing guanine (G) and 8-oxoguanine (8OG), i.e. , ds(5′-GGG-3′) and ds(5′-G8OGG-3′) in B-DNA conformation. Using DFT, we calculated a variety of properties, viz. , vertical and adiabatic ionization potentials, spin density distributions in oxidized stacks, solvent and solute reorganization energies and one-electron oxidation potential ( E 0 ) in the aqueous phase. Calculations for the vertical state of the -GGG- cation radical showed that the spin was found mainly (67%) on the middle G. However, upon relaxation to the adiabatic -GGG- cation radical, the spin localized (96%) on the 5′-G, as observed in experiments. Hole localizations on the middle G and 3′-G were higher in energy by 0.5 kcal mol −1 and 0.4 kcal mol −1 , respectively, than that of 5′-G. In the -G8OGG- cation radical, the spin localized only on the 8OG in both vertical and adiabatic states. The calculated vertical ionization potentials of -GGG- and -G8OGG- stacks were found to be lower than that of the vertical ionization potential of a single G in DNA. The calculated E 0 values of -GGG- and -G8OGG- stacks are 1.15 and 0.90 V, respectively, which owing to stacking effects are substantially lower than the corresponding experimental E 0 values of their monomers (1.49 and 1.18 V, respectively). SOMO to HOMO level switching is observed in these oxidized stacks. Consequently, our calculations predict that local double oxidations in DNA will form triplet diradical states, which are especially significant for high LET radiations.more » « less
-
ABSTRACT The energies and geometries of the lowest lying singlet and triplet states of the four diradicals formed by removing two H atoms from thiophene have been characterized. We utilized the highly correlated, multireference methods configuration interaction with single and double excitations with and without the Pople correction for size‐extensivity (MR‐CISD+Q and MR‐CISD) and averaged quadratic coupled cluster theory (MR‐AQCC). CAS (8,7) and CAS (10,8) active spaces involving σ, σ*, π, and π* orbitals were employed along with the cc‐pVDZ and cc‐pVTZ basis sets. The larger active space included the two electrons in the nonbonding sp2hybrid orbital on sulfur. We find that all didehydro isomers exist as planar, stable ground state singlets. The singlet‐triplet (S‐T) adiabatic gaps range from 15 to 25 kcal/mol while the vertical splittings are 21–35 kcal/mol. The 2,3 isomer has the lowest absolute ground state singlet energy and the largest adiabatic and vertical S‐T splitting. The ground states of the 2,3‐, and 2,5‐didehydrothiophene isomers are predicted to exhibit the smallest and largest diradical character, respectively, based on their electronic structures, spin densities and bonding analysis. To our knowledge, no experimental excitation energies of any of the didehydrothiophene isomers are available, and our computed MR‐AQCC/cc‐pVTZ data are believed to be among the most accurate computed results. This extensive study shows a competitive performance between MR‐AQCC and MR‐CISD+Q.more » « less
-
First, high-resolution sub-Doppler infrared spectroscopic results for cyclopentyl radical (C 5 H 9 ) are reported on the α-CH stretch fundamental with suppression of spectral congestion achieved by adiabatic cooling to T rot ≈ 19(4) K in a slit jet expansion. Surprisingly, cyclopentyl radical exhibits a rotationally assignable infrared spectrum, despite 3N − 6 = 36 vibrational modes and an upper vibrational state density (ρ ≈ 40–90 #/cm −1 ) in the critical regime (ρ ≈ 100 #/cm −1 ) necessary for onset of intramolecular vibrational relaxation (IVR) dynamics. Such high-resolution data for cyclopentyl radical permit detailed fits to a rigid-rotor asymmetric top Hamiltonian, initial structural information for ground and vibrationally excited states, and opportunities for detailed comparison with theoretical predictions. Specifically, high level ab initio calculations at the coupled-cluster singles, doubles, and perturbative triples (CCSD(T))/ANO0, 1 level are used to calculate an out-of-plane bending potential, which reveals a C 2 symmetry double minimum 1D energy surface over a C 2v transition state. The inversion barrier [V barrier ≈ 3.7(1) kcal/mol] is much larger than the effective moment of inertia for out-of-plane bending, resulting in localization of the cyclopentyl wavefunction near its C 2 symmetry equilibrium geometry and tunneling splittings for the ground state too small (<1 MHz) to be resolved under sub-Doppler slit jet conditions. The persistence of fully resolved high-resolution infrared spectroscopy for such large cyclic polyatomic radicals at high vibrational state densities suggests a “deceleration” of IVR for a cycloalkane ring topology, much as low frequency torsion/methyl rotation degrees of freedom have demonstrated a corresponding “acceleration” of IVR processes in linear hydrocarbons.more » « less
An official website of the United States government
