skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Towards Metabolic Organic Radical Contrast Agents (mORCAs) for Magnetic Resonance Imaging
We report two conjugates of gem-diethyl pyrroline nitroxide radicals with D-mannosamine as potential metabolic organic radical contrast agents, mORCAs, circumventing the need for biorthogonal reactions. In-cell EPR spectroscopy, using Jurkat cells and analogous conjugate, based on a pyrrolidine nitroxide radical, shows an efficient incorporation of highly immobilized nitroxides, with a correlation time of τcor = 20 ns. In vivo MRI experiments in mice show that the paramagnetic nitroxide radical shortens the T1 and T2 relaxation times of protons in water located in the kidney and brain by only up to ~10% after 3 d. Ex vivo EPR spectroscopic analyses indicate that the contrast agents in mouse tissues are primarily localized in the kidney, lung, liver, heart, and blood, which primarily contain immobilized nitroxide radicals with τcor = 4–9 ns. The spin concentrations in tissues remain low (1–3 nmol g⁻1) at 24 h after the third mORCA injection, approximately one to two orders of magnitude lower than those of ORCAFluor and BASP-ORCA (measured at ~24 h post-injection). These low spin concentrations explain the small proton T1 and T2 relaxation changes observed in in vivo MRI.  more » « less
Award ID(s):
1955349 2247170
PAR ID:
10594330
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Molecules
Volume:
30
Issue:
7
ISSN:
1420-3049
Page Range / eLocation ID:
1581
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Magnetic resonance imaging, MRI, relying on 19F nuclei has attracted much attention, because the isotopes exhibit a high gyromagnetic ratio (comparable to that of protons) and have 100% natural abundance. Furthermore, due to the very low traces of intrinsic fluorine in biological tissues, fluorine labeling allows easy visualization in vivo using 19F-based MRI. However, one of the drawbacks of the available fluorine tracers is their very limited solubility in water. Here, we detail the design and preparation of a set of water-compatible fluorine-rich polymers as contrast agents that can enhance the effectiveness of 19F-based MRI. The agents are synthesized using the nucleophilic addition reaction between poly(isobutylene-alt-maleic anhydride) copolymer and a mixture of amine-appended fluorine groups and polyethylene glycol (PEG) blocks. This allows control over the polymer architecture and stoichiometry, resulting in good affinity to water solutions. We further investigate the effects of introducing additional segmental mobility to the fluorine moieties in the polymer, by inserting a PEG linker between the moieties and the polymer backbone. We find that controlling the polymer stoichiometry and introducing additional segmental mobility enhance the NMR signals and narrow the peak profile. In particular, we assess the impact of the PEG linker on T2* and T1 relaxation times, using a series of gradient-recalled echo images with varying echo times, TE, or recovery time, TR, respectively. We find that for equivalent concentrations, the PEG linker greatly increases T2*, while maintaining high T1 values, as compared to polymers without this linker. Phantom images collected from these compounds show bright signals over a background with high intensities. 
    more » « less
  2. EPR spectroscopy is used to interrogate nucleophilic and radical reactions at colloidal metal chalcogenide quantum dot surfaces via thermal or photochemical formation of surface-bound nitroxide radicals from spin trap molecules. 
    more » « less
  3. Abstract PurposeTo compare T1 and T2 measurements across commercial and prototype 0.55T MRI systems in both phantom and healthy participants using the same vendor‐neutral pulse sequences, reconstruction, and analysis methods. MethodsStandard spin echo measurements and abbreviated protocol measurements of T1, B1, and T2 were made on two prototype 0.55 T systems and two commercial 0.55T systems using an ISMRM/NIST system phantom. Additionally, five healthy participants were imaged at each system using the abbreviated protocol for T1, B1, and T2 measurement. The phantom measurements were compared to NMR‐based reference measurements to determine accuracy, and both phantom and in vivo measurements were compared to assess reproducibility and differences between the prototype and commercial systems. ResultsVendor‐neutral sequences were implemented across all four systems, and the code for pulse sequences and reconstruction is freely available. For participants, there was no difference in the mean T1 and T2 relaxation times between the prototype and commercial systems. In the phantom, there were no significant differences between the prototype and commercial systems for T1 and T2 measurements using the abbreviated protocol. ConclusionQuantitative T1 and T2 measurements at 0.55T in phantom and healthy participants are not statistically different across the prototype and commercial systems. 
    more » « less
  4. Abstract Pulsed EPR experiments have proven to be an important tool for measuring EPR spectra, kinetics and relaxation rates of free radicals and triplet molecules. The EPR frequencies and selection rules from CW-EPR spectra also govern pulsed EPR-experiments, but pulsed excitation provides much greater control over spin dynamics and allows clean separation and measurement of many properties of the spin system. Most pulsed EPR measurements of triplet molecules have been made in the selective pulse limit where only one EPR transition of a molecule is excited by microwave pulses and its EPR spectroscopy behaves like that of a radical with spin of 
    more » « less
  5. Dr. Sudipta Maiti (Ed.)
    Sialoglycans on HeLa cells were labeled with a nitroxide spin radical through enzymatic glycoengineering (EGE)-mediated installation of an azide-modified sialic acid (Neu5Ac9N3) and then click reaction-based attachment of a nitroxide spin radical. An α2,6-sialyltransferase (ST) Pd2,6ST and an α2,3-ST CSTII were used for EGE to install α2,6- and α2,3-linked Neu5Ac9N3, respectively. The spin-labeled cells were analyzed by X-band continuous wave (CW) electron paramagnetic resonance (EPR) spectroscopy to gain insights into the dynamics and organizations of cell surface α2,6- and α2,3-sialoglycans. Simulations of the EPR spectra revealed fast- and intermediate-motion components for the spin radicals in both sialoglycans. However, α2,6- and α2,3-sialoglycans in HeLa cells possess different distributions of the two components, e.g., a higher average population of the intermediate-motion component for α2,6-sialoglycans (78%) than that for α2,3-sialoglycans (53%). Thus, the average mobility of spin radicals in α2,3-sialoglycans was higher than that in α2,6-sialoglycans. Given the fact that a spin-labeled sialic acid residue attached to the 6-O-position of galactose/N-acetyl-galactosamine would experience less steric hindrance and show more flexibility than that attached to the 3-O-position, these results may reflect the differences in local crowding/packing that restrict spin-label and sialic acid motion for the α2,6-linked sialoglycans. The studies further suggest that Pd2,6ST and CSTII may have different preferences for glycan substrates in the complex environment of extracellular matrix. The discoveries of this work are biologically important as they are useful for interpreting the different functions of α2,6- and α2,3-sialoglycans and indicate the possibility of using Pd2,6ST and CSTII to target different glycoconjugates on cells. 
    more » « less