skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Broadening Participation in STEM-based Computational Modeling by Leveraging Alternatives to Programming
Computational models (CMs) offer pre-college students opportunities to integrate STEM disciplines with computational thinking in ways that reflect authentic STEM practice. However, not all STEM teachers and students are prepared to teach or learn programming skills required to construct CMs. To broaden participation in computing, we propose instructional approaches that integrate STEM with CMs without requiring students to program, thereby alleviating challenges associated with learning how to program.  more » « less
Award ID(s):
2055609
PAR ID:
10594350
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
International Society of the Learning Sciences
Date Published:
Page Range / eLocation ID:
2325 to 2326
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Computational models (CMs) offer pre-college students opportunities to integrate STEM disciplines with computational thinking (CT) in ways that reflect authentic STEM practice. However, not all STEM teachers and students are prepared to teach or learn programming skills required to construct CMs. To help broaden participation in computing and reduce the potentially prohibitive demands of learning programming, we propose alternate versions of computational modeling that require low or no programming. These versions rely on code comprehension and evaluation of given code and simulations instead of code creation. We present results from a pilot study that explores student engagement with CT practices and student challenges in three types of computational modeling activities. 
    more » « less
  2. Kong, S.C. (Ed.)
    This work aims to help high school STEM teachers integrate computational thinking (CT) into their classrooms by engaging teachers as curriculum co-designers. K-12 teachers who are not trained in computer science may not see the value of CT in STEM classrooms and how to engage their students in computational practices that reflect the practices of STEM professionals. To this end, we developed a 4-week professional development workshop for eight science and mathematics high school teachers to co-design computationally enhanced curriculum with our team of researchers. The workshop first provided an introduction to computational practices and tools for STEM education. Then, teachers engaged in co-design to enhance their science and mathematics curricula with computational practices in STEM. Data from surveys and interviews showed that teachers learned about computational thinking, computational tools, coding, and the value of collaboration after the professional development. Further, they were able to integrate multiple computational tools that engage their students in CT-STEM practices. These findings suggest that teachers can learn to use computational practices and tools through workshops, and that teachers collaborating with researchers in co-design to develop computational enhanced STEM curriculum may be a powerful way to engage students and teachers with CT in K-12 classrooms. 
    more » « less
  3. This paper examines the impact of a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (NSF S-STEM) Program at a large, Minority-Serving institution in the western U.S. Despite growing efforts to diversify STEM fields, underrepresented minority (URM) students continue to face significant challenges in persistence and success. This scholarship program addresses these challenges by providing financial support, faculty and peer mentorship, and skills development opportunities to academically talented and low-income URM STEM students. This study evaluates how participation in the program enhances key noncognitive skills, such as students' sense of belonging, leadership and collaboration skills, and science identity, which are critical to STEM persistence. Using both survey and university-based data among the 47 participating scholars, results reveal that program participants report strong levels of sense of belonging, high efficacy in leadership and collaboration skills, and strong science/math identities. Additionally, compared to university rates, scholarship students showed above-average retention and graduation rates, with the majority pursuing graduate studies or careers in STEM. These findings highlight the importance of comprehensive support programs that integrate financial aid, mentorship, and professional development to promote persistence and success among URM students in STEM fields. 
    more » « less
  4. Blikstein, P; Van_Aalst, J; Kizito, R; Brennan, K (Ed.)
    Developing assessment tools for computational thinking (CT) in STEM education is a precursor for science teachers to effectively integrate intervention strategies for CT practices. One problem to assessing CT skills is students’ varying familiarity with different programming languages and platforms. A text-neutral, open-source platform called iFlow, is capable of addressing this issue. Specifically, this innovative technology has been adopted to elicit underrepresented undergraduate students’ debugging skills. We present how the visual-based coding platform can be applied to bypass programming language bias in assessing CT. In this preliminary study, we discuss design principles of a visual-based platform to effectively assess debugging practices – identification, isolation, and iteration – with the use of iFlow assignments. Our findings suggest how the ability of iFlow to test parts of a program independently, dataflow connectivity, and equity in removing biases from students’ various backgrounds are advantageous over text-based platforms. 
    more » « less
  5. null (Ed.)
    Abstract Since 2009, the mechanical engineering (ME) scholarship-science technology engineering and mathematics (S-STEM) Program at the University of Maryland Baltimore County (UMBC) has provided financial support and program activities to ME undergraduate students aiming at improving their retention and graduation rates. The objective of this study is to identify program activities that were most effective to help students for improvements. Current ME S-STEM scholars were asked to complete a survey that measures their scientific efficacy, engineering identity, expectations, integration, and sense of belonging, as well as how program activities impact their attitudes and perceptions. Analyses of 36 collected surveys showed that scholars reported high levels of engineering identity, expectations, and sense of belonging. However, further improvements were needed to help students in achieving scientific efficacy and academic integration into the program. Results demonstrated that pro-active mentoring was the most effective method contributing to positive attitudes and perceptions. The implemented S-STEM research-related activities and internship were viewed favorably by the scholars in helping them establish their scientific efficacy and engineering identity, and understand their expectations and goals. Community building activities were considered helpful for them to integrate into campus life and improve their sense of belonging to the campus and program. Scholars identified mentoring, research related activities, internships, and social interaction with faculty and their peers as important factors for their retention and graduation. Although the sample size was small in the study, we believe that the cost-effective activities identified could be adopted by other institutions to further improve students' retention and graduation rates in engineering programs. 
    more » « less