The purpose of this tutorial paper is to present a broad overview of photon-pair generation through the spontaneous four wave mixing (SFWM) process in optical fibers. Progress in optical fiber technology means that today we have at our disposal a wide variety of types of fiber, which, together with the fact that SFWM uses two pump fields, implies a truly remarkable versatility in the resulting possible photon-pair properties. We discuss how the interplay of frequency, transverse mode, and polarization degrees of freedom—the first linked to the latter two through fiber dispersion—leads to interesting entanglement properties both in individual degrees of freedom and also permitting hybrid and hyper entanglement in combinations of degrees of freedom. This tutorial covers methods for photon-pair factorability, frequency tunability, and SFWM bandwidth control, the effect of frequency non-degenerate and counterpropagating pumps, as well as methods for characterizing photon pairs generated in optical fibers.
more »
« less
This content will become publicly available on May 28, 2026
Progress toward photon-pair efficiency optimization using four-wave mixing in few-mode fibers
Intermodal four-wave mixing (FWM) process in few-mode fibers (FMFs) could be utilized for entangled photon-pair generation. Previous studies mainly performed in single-mode fibers suffered from the significant Raman scattering background from the glass fiber. Therefore, the instantaneous Raman and FWM effects would compete; this could be avoided in FMFs if the modal dispersion is larger than the Raman gain spectra. Utilizing two pumps in different modes in FMFs will generate photon pairs in various modes. Here, we study the effect of pump spectral separation on the intermodal FWM power and bandwidth using a seeding technique. It is concluded that the further the pumps and intermodal FWM idler and signal are from each other spectrally, the smaller the photon efficiency and larger the bandwidth. Experimental results for two FMFs of different differential mode group delay values are presented.
more »
« less
- Award ID(s):
- 2301870
- PAR ID:
- 10594395
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Applied Optics
- Volume:
- 64
- Issue:
- 16
- ISSN:
- 1559-128X; APOPAI
- Format(s):
- Medium: X Size: Article No. 4654
- Size(s):
- Article No. 4654
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Plasma is capable of mediating the conversion of two pump photons into two different photons through a relativistic four-wave mixing nonlinearity. Spontaneously created photon pairs are emitted at symmetric angles with respect to the colinear pump direction, and the emission rate is largest if they have identical frequency. Thus, two orthogonally polarized pumps can produce polarization-entangled photon pairs through a millimeter-long homogeneous plasma. The noise from Raman scattering can be avoided if the pump detuning differs from twice the plasma frequency. However, pump detuning exactly equal to twice the plasma frequency can significantly enhance the interaction rate, which allows for the production of strong two-mode squeezed states. Remarkably, the amplified noise from Raman scattering are correlated and hence can be suppressed in one of the output quadratures, thereby maintaining the squeezing magnitude.more » « less
-
Being able to image chemical bonds with high sensitivity and speed, stimulated Raman scattering (SRS) microscopy has made a major impact in biomedical optics. However, it is well known that the standard SRS microscopy suffers from various backgrounds, limiting the achievable contrast, quantification and sensitivity. While many frequency-modulation (FM) SRS schemes have been demonstrated to retrieve the sharp vibrational contrast, they often require customized laser systems and/or complicated laser pulse shaping or introduce additional noise, thereby hindering wide adoption. Herein we report a simple but robust strategy for FM-SRS microscopy based on a popular commercial laser system and regular optics. Harnessing self-phase modulation induced self-balanced spectral splitting of picosecond Stokes beam propagating in standard single-mode silica fibers, a high-performance FM-SRS system is constructed without introducing any additional signal noise. Our strategy enables adaptive spectral resolution for background-free SRS imaging of Raman modes with different linewidths. The generality of our method is demonstrated on a variety of Raman modes with effective suppressing of backgrounds including non-resonant cross phase modulation and electronic background from two-photon absorption or pump-probe process. As such, our method is promising to be adopted by the SRS microscopy community for background-free chemical imaging.more » « less
-
We investigate numerically and experimentally an all-fiber, bandwidth tunable spectral filter comprising birefringent fibers. The spectral bandwidth tunability of the filter is based on the compensation of birefringence in polarization maintaining fibers. This unique filter allows mode-locked operation of a fiber oscillator with the ability to generate distinct laser modes with different output spectral shapes and pulse evolutions.more » « less
-
We demonstrate imaging of individual modes in a femtosecond laser written multimode waveguide by spatial-heterodyne interferometry and decomposition in data post-processing. Despite the spatial and temporal overlap between multiple waveguide modes, we show the extraction of amplitude for each individual mode and their corresponding temporal dynamics. The mode imaging scheme is effective with the presence of intermodal interference and can be prospective for sensing of ultrafast phase and refractive index fluctuations. We also reconstruct the two-dimensional transverse refractive index map of the multimode waveguide leveraging all the imaged modes and substantiate the reconstructed index map by simulation.more » « less