skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Neural network approaches for parameterized optimal control
We consider numerical approaches for deterministic, finite-dimensional optimal control problems whose dynamics depend on unknown or uncertain parameters. We seek to amortize the solution over a set of relevant parameters in an offline stage to enable rapid decision-making and be able to react to changes in the parameter in the online stage. To tackle the curse of dimensionality arising when the state and/or parameter are high-dimensional, we represent the policy using neural networks. We compare two training paradigms: First, our model-based approach leverages the dynamics and definition of the objective function to learn the value function of the parameterized optimal control problem and obtain the policy using a feedback form. Second, we use actor-critic reinforcement learning to approximate the policy in a data-driven way. Using an example involving a two-dimensional convection-diffusion equation, which features high-dimensional state and parameter spaces, we investigate the accuracy and efficiency of both training paradigms. While both paradigms lead to a reasonable approximation of the policy, the model-based approach is more accurate and considerably reduces the number of PDE solves.  more » « less
Award ID(s):
2038118 1751636
PAR ID:
10594480
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Institute of Mathematical Sciences
Date Published:
Journal Name:
Foundations of Data Science
Volume:
7
Issue:
1
ISSN:
2639-8001
Page Range / eLocation ID:
363 to 385
Subject(s) / Keyword(s):
Hamilton-Jacobi-Bellman equation Reinforcement Learning high dimensional optimal control PDE constrained optimization neural networks policy optimization actor-critic
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a neural network approach that yields approximate solutions for high-dimensional optimal control problems and demonstrate its effectiveness using examples from multi-agent path finding. Our approach yields controls in a feedback form, where the policy function is given by a neural network (NN). Specifically, we fuse the Hamilton-Jacobi-Bellman (HJB) and Pontryagin Maximum Principle (PMP) approaches by parameterizing the value function with an NN. Our approach enables us to obtain approximately optimal controls in real-time without having to solve an optimization problem. Once the policy function is trained, generating a control at a given space-time location takes milliseconds; in contrast, efficient nonlinear programming methods typically perform the same task in seconds. We train the NN offline using the objective function of the control problem and penalty terms that enforce the HJB equations. Therefore, our training algorithm does not involve data generated by another algorithm. By training on a distribution of initial states, we ensure the controls' optimality on a large portion of the state-space. Our grid-free approach scales efficiently to dimensions where grids become impractical or infeasible. We apply our approach to several multi-agent collision-avoidance problems in up to 150 dimensions. Furthermore, we empirically observe that the number of parameters in our approach scales linearly with the dimension of the control problem, thereby mitigating the curse of dimensionality. 
    more » « less
  2. We present a neural network approach for approximating the value function of high- dimensional stochastic control problems. Our training process simultaneously updates our value function estimate and identifies the part of the state space likely to be visited by optimal trajectories. Our approach leverages insights from optimal control theory and the fundamental relation between semi-linear parabolic partial differential equations and forward-backward stochastic differential equations. To focus the sampling on relevant states during neural network training, we use the stochastic Pontryagin maximum principle (PMP) to obtain the optimal controls for the current value function estimate. By design, our approach coincides with the method of characteristics for the non-viscous Hamilton-Jacobi-Bellman equation arising in deterministic control problems. Our training loss consists of a weighted sum of the objective functional of the control problem and penalty terms that enforce the HJB equations along the sampled trajectories. Importantly, training is unsupervised in that it does not require solutions of the control problem. Our numerical experiments highlight our scheme’s ability to identify the relevant parts of the state space and produce meaningful value estimates. Using a two-dimensional model problem, we demonstrate the importance of the stochastic PMP to inform the sampling and compare to a finite element approach. With a nonlinear control affine quadcopter example, we illustrate that our approach can handle complicated dynamics. For a 100-dimensional benchmark problem, we demonstrate that our approach improves accuracy and time-to-solution and, via a modification, we show the wider applicability of our scheme. 
    more » « less
  3. The robust πœ™-regularized Markov Decision Process (RRMDP) framework focuses on designing control policies that are robust against parameter uncertainties due to mismatches between the simulator (nominal) model and real-world settings. This work makes two important contributions. First, we propose a model-free algorithm called Robust πœ™-regularized fitted Q-iteration for learning an πœ–-optimal robust policy that uses only the historical data collected by rolling out a behavior policy (with robust exploratory requirement) on the nominal model. To the best of our knowledge, we provide the first unified analysis for a class of πœ™-divergences achieving robust optimal policies in high-dimensional systems of arbitrary large state space with general function approximation. Second, we introduce the hybrid robust πœ™-regularized reinforcement learning framework to learn an optimal robust policy using both historical data and online sampling. Towards this framework, we propose a model-free algorithm called Hybrid robust Total-variation-regularized Q-iteration. To the best of our knowledge, we provide the first improved out-of-data-distribution assumption in large-scale problems of arbitrary large state space with general function approximation under the hybrid robust πœ™-regularized reinforcement learning framework. 
    more » « less
  4. zhu, Ji (Ed.)
    Dynamic treatment regimes or policies are a sequence of decision functions over multiple stages that are tailored to individual features. One important class of treatment policies in practice, namely multi-stage stationary treatment policies, prescribes treatment assignment probabilities using the same decision function across stages, where the decision is based on the same set of features consisting of time-evolving variables (e.g., routinely collected disease biomarkers). Although there has been extensive literature on constructing valid inference for the value function associated with dynamic treatment policies, little work has focused on the policies themselves, especially in the presence of high-dimensional feature variables. We aim to fill the gap in this work. Specifically, we first obtain the multi-stage stationary treatment policy by minimizing the negative augmented inverse probability weighted estimator of the value function to increase asymptotic efficiency. A penalty is applied on the policy parameters to select important feature variables. We then construct one-step improvements of the policy parameter estimators for valid inference. Theoretically, we show that the improved estimators are asymptotically normal, even if nuisance parameters are estimated at a slow convergence rate and the dimension of the feature variables increases with the sample size. Our numerical studies demonstrate that the proposed method estimates a sparse policy with a near-optimal value function and conducts valid inference for the policy parameters. 
    more » « less
  5. null (Ed.)
    We propose a neural network approach for solving high-dimensional optimal control problems. In particular, we focus on multi-agent control problems with obstacle and collision avoidance. These problems immediately become high-dimensional, even for moderate phase-space dimensions per agent. Our approach fuses the Pontryagin Maximum Principle and Hamilton-Jacobi-Bellman (HJB) approaches and parameterizes the value function with a neural network. Our approach yields controls in a feedback form for quick calculation and robustness to moderate disturbances to the system. We train our model using the objective function and optimality conditions of the control problem. Therefore, our training algorithm neither involves a data generation phase nor solutions from another algorithm. Our model uses empirically effective HJB penalizers for efficient training. By training on a distribution of initial states, we ensure the controls' optimality is achieved on a large portion of the state-space. Our approach is grid-free and scales efficiently to dimensions where grids become impractical or infeasible. We demonstrate our approach's effectiveness on a 150-dimensional multi-agent problem with obstacles. 
    more » « less