skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: LSEMINK: a modified Newton–Krylov method for Log-Sum-Exp minimization
This paper introduces LSEMINK, an effective modified Newton–Krylov algorithm geared toward minimizing the log-sum-exp function for a linear model. Problems of this kind arise commonly, for example, in geometric programming and multinomial logistic regression. Although the log-sum-exp function is smooth and convex, standard line-search Newton-type methods can become inefficient because the quadratic approximation of the objective function can be unbounded from below. To circumvent this, LSEMINK modifies the Hessian by adding a shift in the row space of the linear model. We show that the shift renders the quadratic approximation to be bounded from below and that the overall scheme converges to a global minimizer under mild assumptions. Our convergence proof also shows that all iterates are in the row space of the linear model, which can be attractive when the model parameters do not have an intuitive meaning, as is common in machine learning. Since LSEMINK uses a Krylov subspace method to compute the search direction, it only requires matrix-vector products with the linear model, which is critical for large-scale problems. Our numerical experiments on image classification and geometric programming illustrate that LSEMINK considerably reduces the time-to-solution and increases the scalability compared to geometric programming and natural gradient descent approaches. It has significantly faster initial convergence than standard Newton–Krylov methods, which is particularly attractive in applications like machine learning. In addition, LSEMINK is more robust to ill-conditioning arising from the nonsmoothness of the problem. We share our MATLAB implementation at a GitHub repository (https://github.com/KelvinKan/LSEMINK).  more » « less
Award ID(s):
2038118 1751636 2208294
PAR ID:
10594556
Author(s) / Creator(s):
; ;
Publisher / Repository:
RICAM
Date Published:
Journal Name:
ETNA - Electronic Transactions on Numerical Analysis
Volume:
60
ISSN:
1068-9613
Page Range / eLocation ID:
618 to 635
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work concerns the local convergence theory of Newton and quasi-Newton methods for convex-composite optimization: where one minimizes an objective that can be written as the composition of a convex function with one that is continuiously differentiable. We focus on the case in which the convex function is a potentially infinite-valued piecewise linear-quadratic function. Such problems include nonlinear programming, mini-max optimization, and estimation of nonlinear dynamics with non-Gaussian noise as well as many modern approaches to large-scale data analysis and machine learning. Our approach embeds the optimality conditions for convex-composite optimization problems into a generalized equation. We establish conditions for strong metric subregularity and strong metric regularity of the corresponding set-valued mappings. This allows us to extend classical convergence of Newton and quasi-Newton methods to the broader class of nonfinite valued piecewise linear-quadratic convex-composite optimization problems. In particular, we establish local quadratic convergence of the Newton method under conditions that parallel those in nonlinear programming. 
    more » « less
  2. null (Ed.)
    Model-free reinforcement learning attempts to find an optimal control action for an unknown dynamical system by directly searching over the parameter space of controllers. The convergence behavior and statistical properties of these approaches are often poorly understood because of the nonconvex nature of the underlying optimization problems as well as the lack of exact gradient computation. In this paper, we examine the standard infinite-horizon linear quadratic regulator problem for continuous-time systems with unknown state-space parameters. We provide theoretical bounds on the convergence rate and sample complexity of a random search method. Our results demonstrate that the required simulation time for achieving 𝜖-accuracy in a model-free setup and the total number of function evaluations are both of 𝑂(log(1/𝜖)). 
    more » « less
  3. Abstract In this paper we present an efficient active-set method for the solution of convex quadratic programming problems with general piecewise-linear terms in the objective, with applications to sparse approximations and risk-minimization. The algorithm is derived by combining a proximal method of multipliers (PMM) with a standard semismooth Newton method (SSN), and is shown to be globally convergent under minimal assumptions. Further local linear (and potentially superlinear) convergence is shown under standard additional conditions. The major computational bottleneck of the proposed approach arises from the solution of the associated SSN linear systems. These are solved using a Krylov-subspace method, accelerated by certain novel general-purpose preconditioners which are shown to be optimal with respect to the proximal penalty parameters. The preconditioners are easy to store and invert, since they exploit the structure of the nonsmooth terms appearing in the problem’s objective to significantly reduce their memory requirements. We showcase the efficiency, robustness, and scalability of the proposed solver on a variety of problems arising in risk-averse portfolio selection,$$L^1$$ L 1 -regularized partial differential equation constrained optimization, quantile regression, and binary classification via linear support vector machines. We provide computational evidence, on real-world datasets, to demonstrate the ability of the solver to efficiently and competitively handle a diverse set of medium- and large-scale optimization instances. 
    more » « less
  4. Jaggi, Martin (Ed.)
    A classical approach for solving discrete time nonlinear control on a nite horizon consists in repeatedly minimizing linear quadratic approximations of the original problem around current candidate solutions. While widely popular in many domains, such an approach has mainly been analyzed locally. We provide detailed convergence guarantees to stationary points as well as local linear convergence rates for the Iterative Linear Quadratic Regulator (ILQR) algorithm and its Di erential Dynamic Programming (DDP) variant. For problems without costs on control variables, we observe that global convergence to minima can be ensured provided that the linearized discrete time dynamics are surjective, costs on the state variables are gradient dominated. We further detail quadratic local convergence when the costs are self-concordant. We show that surjectivity of the linearized dynamics hold for appropriate discretization schemes given the existence of a feedback linearization scheme. We present complexity bounds of algorithms based on linear quadratic approximations through the lens of generalized Gauss-Newton methods. Our analysis uncovers several convergence phases for regularized generalized Gauss-Newton algorithms. 
    more » « less
  5. We propose a randomized algorithm with quadratic convergence rate for convex optimization problems with a self-concordant, composite, strongly convex objective function. Our method is based on performing an approximate Newton step using a random projection of the Hessian. Our first contribution is to show that, at each iteration, the embedding dimension (or sketch size) can be as small as the effective dimension of the Hessian matrix. Leveraging this novel fundamental result, we design an algorithm with a sketch size proportional to the effective dimension and which exhibits a quadratic rate of convergence. This result dramatically improves on the classical linear-quadratic convergence rates of state-of-theart sub-sampled Newton methods. However, in most practical cases, the effective dimension is not known beforehand, and this raises the question of how to pick a sketch size as small as the effective dimension while preserving a quadratic convergence rate. Our second and main contribution is thus to propose an adaptive sketch size algorithm with quadratic convergence rate and which does not require prior knowledge or estimation of the effective dimension: at each iteration, it starts with a small sketch size, and increases it until quadratic progress is achieved. Importantly, we show that the embedding dimension remains proportional to the effective dimension throughout the entire path and that our method achieves state-of-the-art computational complexity for solving convex optimization programs with a strongly convex component. We discuss and illustrate applications to linear and quadratic programming, as well as logistic regression and other generalized linear models. 
    more » « less