skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lifetime laser damage performance of β-Ga2O3 for high power applications
Gallium oxide (Ga2O3) is an emerging wide bandgap semiconductor with potential applications in power electronics and high power optical systems where gallium nitride and silicon carbide have already demonstrated unique advantages compared to gallium arsenide and silicon-based devices. Establishing the stability and breakdown conditions of these next-generation materials is critical to assessing their potential performance in devices subjected to large electric fields. Here, using systematic laser damage performance tests, we establish that β-Ga2O3 has the highest lifetime optical damage performance of any conductive material measured to date, above 10 J/cm2 (1.4 GW/cm2). This has direct implications for its use as an active component in high power laser systems and may give insight into its utility for high-power switching applications. Both heteroepitaxial and bulk β-Ga2O3 samples were benchmarked against a heteroepitaxial gallium nitride sample, revealing an order of magnitude higher optical lifetime damage threshold for β-Ga2O3. Photoluminescence and Raman spectroscopy results suggest that the exceptional damage performance of β-Ga2O3 is due to lower absorptive defect concentrations and reduced epitaxial stress.  more » « less
Award ID(s):
1755479
PAR ID:
10594665
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Materials
Volume:
6
Issue:
3
ISSN:
2166-532X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. β-phase gallium oxide ( β-Ga2O3) has drawn significant attention due to its large critical electric field strength and the availability of low-cost high-quality melt-grown substrates. Both aspects are advantages over gallium nitride (GaN) and silicon carbide (SiC) based power switching devices. However, because of the poor thermal conductivity of β-Ga2O3, device-level thermal management is critical to avoid performance degradation and component failure due to overheating. In addition, for high-frequency operation, the low thermal diffusivity of β-Ga2O3 results in a long thermal time constant, which hinders the use of previously developed thermal solutions for devices based on relatively high thermal conductivity materials (e.g., GaN transistors). This work investigates a double-side diamond-cooled β-Ga2O3 device architecture and provides guidelines to maximize the device’s thermal performance under both direct current (dc) and high-frequency switching operation. Under high-frequency operation, the use of a β-Ga2O3 composite substrate (bottom-side cooling) must be augmented by a diamond passivation overlayer (top-side cooling) because of the low thermal diffusivity of β-Ga2O3. 
    more » « less
  2. This work demonstrates quasi-vertical β-Ga2O3 Schottky barrier diodes (SBDs) fabricated on c-plane sapphire substrates using an all-low-pressure chemical vapor deposition (LPCVD)-based, plasma-free process flow that integrates both epitaxial growth of a high-quality β-Ga2O3 heteroepitaxial film with in situ Ga-assisted β-Ga2O3 etching. A 6.3 μm thick (2̄01) oriented β-Ga2O3 epitaxial layer structure was grown on c-plane sapphire with 6° miscut, comprising a moderately Si-doped (2.1 × 1017 cm−3) 3.15 μm thick drift layer and a heavily doped (1 × 1019 cm−3) contact layer on an unintentionally doped buffer layer. Mesa isolation was achieved via Ga-assisted plasma-free LPCVD etching, producing ∼60° inclined mesa sidewalls with an etch depth of 3.6 μm. The fabricated SBDs exhibited excellent forward current–voltage characteristics, including a turn-on voltage of 1.22 V, an ideality factor of 1.29, and a Schottky barrier height of 0.83 eV. The minimum differential specific on-resistance was measured to be 8.6 mΩ cm2, and the devices demonstrated high current density capability (252 A/cm2 at 5 V). Capacitance–voltage analysis revealed a net carrier concentration of 2.1 × 1017 cm−3, uniformly distributed across the β-Ga2O3 drift layer. Temperature-dependent J–V–T measurements, conducted from 25 to 250 °C, revealed thermionic emission-dominated transport with strong thermal stability. The Schottky barrier height increased from 0.80 to 1.16 eV, and the ideality factor rose modestly from 1.31 to 1.42 over this temperature range. Reverse leakage current remained low, increasing from ∼5 × 10−6 A/cm2 at 25 °C to ∼1 × 10−4 A/cm2 at 250 °C, with the Ion/Ioff ratio decreasing from ∼1 × 107 to 5 × 105. The devices achieved breakdown voltages ranging from 73 to 100 V, corresponding to parallel-plate electric field strengths of 1.66–1.94 MV/cm. These results highlight the potential of LPCVD-grown and etched β-Ga2O3 devices for high-performance, thermally resilient power electronics applications. 
    more » « less
  3. Ultra-wide band gap semiconductor devices based on β-phase gallium oxide (Ga2O3) offer the potential to achieve higher switching performance and efficiency and lower manufacturing cost than that of today’s wide band gap power electronics. However, the most critical challenge to the commercialization of Ga2O3 electronics is overheating, which impacts the device performance and reliability. We fabricated a Ga2O3/4H–SiC composite wafer using a fusion-bonding method. A low-temperature (≤600 °C) epitaxy and device processing scheme was developed to fabricate MOSFETs on the composite wafer. The low-temperature-grown epitaxial Ga2O3 devices deliver high thermal performance (56% reduction in channel temperature) and a power figure of merit of (∼300 MW/cm2), which is the highest among heterogeneously integrated Ga2O3 devices reported to date. Simulations calibrated based on thermal characterization results of the Ga2O3-on-SiC MOSFET reveal that a Ga2O3/diamond composite wafer with a reduced Ga2O3 thickness (∼1 μm) and a thinner bonding interlayer (<10 nm) can reduce the device thermal impedance to a level lower than that of today’s GaN-on-SiC power switches. 
    more » « less
  4. We report the use of suboxide molecular-beam epitaxy (S-MBE) to grow β-Ga2O3 at a growth rate of ∼1 µm/h with control of the silicon doping concentration from 5 × 1016 to 1019 cm−3. In S-MBE, pre-oxidized gallium in the form of a molecular beam that is 99.98% Ga2O, i.e., gallium suboxide, is supplied. Directly supplying Ga2O to the growth surface bypasses the rate-limiting first step of the two-step reaction mechanism involved in the growth of β-Ga2O3 by conventional MBE. As a result, a growth rate of ∼1 µm/h is readily achieved at a relatively low growth temperature (Tsub ≈ 525 °C), resulting in films with high structural perfection and smooth surfaces (rms roughness of <2 nm on ∼1 µm thick films). Silicon-containing oxide sources (SiO and SiO2) producing an SiO suboxide molecular beam are used to dope the β-Ga2O3 layers. Temperature-dependent Hall effect measurements on a 1 µm thick film with a mobile carrier concentration of 2.7 × 1017 cm−3 reveal a room-temperature mobility of 124 cm2 V−1 s−1 that increases to 627 cm2 V−1 s−1 at 76 K; the silicon dopants are found to exhibit an activation energy of 27 meV. We also demonstrate working metal–semiconductor field-effect transistors made from these silicon-doped β-Ga2O3 films grown by S-MBE at growth rates of ∼1 µm/h. 
    more » « less
  5. β-Ga2O3 is an emerging ultra-wide bandgap semiconductor, holding a tremendous potential for power-switching devices for next-generation high power electronics. The performance of such devices strongly relies on the precise control of electrical properties of β-Ga2O3, which can be achieved by implantation of dopant ions. However, a detailed understanding of the impact of ion implantation on the structure of β-Ga2O3 remains elusive. Here, using aberration-corrected scanning transmission electron microscopy, we investigate the nature of structural damage in ion-implanted β-Ga2O3 and its recovery upon heat treatment with the atomic-scale spatial resolution. We reveal that upon Sn ion implantation, Ga2O3 films undergo a phase transformation from the monoclinic β-phase to the defective cubic spinel γ-phase, which contains high-density antiphase boundaries. Using the planar defect models proposed for the γ-Al2O3, which has the same space group as β-Ga2O3, and atomic-resolution microscopy images, we identify that the observed antiphase boundaries are the {100}1/4 ⟨110⟩ type in cubic structure. We show that post-implantation annealing at 1100 °C under the N2 atmosphere effectively recovers the β-phase; however, nano-sized voids retained within the β-phase structure and a γ-phase surface layer are identified as remanent damage. Our results offer an atomic-scale insight into the structural evolution of β-Ga2O3 under ion implantation and high-temperature annealing, which is key to the optimization of semiconductor processing conditions for relevant device design and the theoretical understanding of defect formation and phase stability. 
    more » « less