Perovskite SrIrO3 films and its heterostructures are very promising, yet less researched, avenues to explore interesting physics originating from the interplay between strong spin–orbit coupling and electron correlations. Elemental iridium is a commonly used source for molecular beam epitaxy (MBE) synthesis of SrIrO3 films. However, elemental iridium is extremely difficult to oxidize and evaporate while maintaining an ultra-high vacuum and a long mean free path. Here, we calculated a thermodynamic phase diagram to highlight these synthesis challenges for phase-pure SrIrO3 and other iridium-based oxides. We addressed these challenges using a novel solid-source metal-organic MBE approach that rests on the idea of modifying the metal-source chemistry. Phase-pure, single-crystalline, coherent, epitaxial (001)pc SrIrO3 films on (001) SrTiO3 substrate were grown. Films demonstrated semi-metallic behavior, Kondo scattering, and weak antilocalization. Our synthesis approach has the potential to facilitate research involving iridate heterostructures by enabling their atomically precise syntheses.
more »
« less
Abrupt enhancement of spin–orbit scattering time in ultrathin semimetallic SrIrO3 close to the metal–insulator transition
We report a magnetotransport study of spin relaxation in 1.4–21.2 nm epitaxial SrIrO3 thin films coherently strained on SrTiO3 substrates. Fully charge compensated semimetallic transport has been observed in SrIrO3 films thicker than 1.6 nm, where the charge mobility at 10 K increases from 45 cm2/V s to 150 cm2/V s with decreasing film thickness. In the two-dimensional regime, the charge dephasing and spin–orbit scattering lengths extracted from the weak localization/anti-localization effects show power-law dependence on temperature, pointing to the important role of electron–electron interaction. The spin–orbit scattering time τso exhibits an Elliott–Yafet mechanism dominated quasi-linear dependence on the momentum relaxation time τp. Ultrathin films approaching the critical thickness of metal–insulator transition show an abrupt enhancement in τso, with the corresponding τso/τp about 7.6 times of the value for thicker films. A likely origin for such unusual enhancement is the onset of strong electron correlation, which leads to charge gap formation and suppresses spin scattering.
more »
« less
- Award ID(s):
- 1710461
- PAR ID:
- 10594696
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Materials
- Volume:
- 8
- Issue:
- 5
- ISSN:
- 2166-532X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report the experimental evidence of evolving lattice distortion in high quality epitaxial orthorhombic SrIrO3(001) thin films fully strained on (001) SrTiO3 substrates. Angle-resolved X-ray photoemission spectroscopy studies show that the surface layer of 5 nm SrIrO3 films is Sr–O terminated, and subsequent layers recover the semimetallic state, with the band structure consistent with an orthorhombic SrIrO3(001) having the lattice constant of the substrate. While there is no band folding in the experimental band structure, additional super-periodicity is evident in low energy electron diffraction measurements, suggesting the emergence of a transition layer with crystal symmetry evolving from the SrTiO3 substrate to the SrIrO3(001) surface. Our study sheds light on the misfit relaxation mechanism in epitaxial SrIrO3 thin films in the orthorhombic phase, which is metastable in bulk.more » « less
-
The inverse spinel ferrimagnetic NiCo2O4possesses high magnetic Curie temperature TC, high spin polarization, and strain-tunable magnetic anisotropy. Understanding the thickness scaling limit of these intriguing magnetic properties in NiCo2O4thin films is critical for their implementation in nanoscale spintronic applications. In this work, we report the unconventional magnetotransport properties of epitaxial (001) NiCo2O4films on MgAl2O4substrates in the ultrathin limit. Anomalous Hall effect measurements reveal strong perpendicular magnetic anisotropy for films down to 1.5 unit cell (1.2 nm), while TCfor 3 unit cell and thicker films remains above 300 K. The sign change in the anomalous Hall conductivity [Formula: see text] and its scaling relation with the longitudinal conductivity ([Formula: see text]) can be attributed to the competing effects between impurity scattering and band intrinsic Berry curvature, with the latter vanishing upon the thickness driven metal–insulator transition. Our study reveals the critical role of film thickness in tuning the relative strength of charge correlation, Berry phase effect, spin–orbit interaction, and impurity scattering, providing important material information for designing scalable epitaxial magnetic tunnel junctions and sensing devices using NiCo2O4.more » « less
-
The wide-gap semiconducting perovskite BaSnO3 has attracted attention since the discovery of outstanding mobility at high electron densities, spurred on by potential applications in oxide, transparent, and power electronics. Despite progress, much remains to be understood in terms of mobility-limiting scattering in BaSnO3 thin films and thus mobility optimization. Here, we apply solid-state ion-gel-based electrolyte gating to electrostatically control electron density over a wide range (1018 cm−3 to >1020 cm−3) in BaSnO3 films. Temperature- and gate-voltage-dependent transport data then probe scattering mechanisms and mobility vs electron density alone, independently of sample-to-sample defect density variations. This is done on molecular-beam-epitaxy- and sputter-deposited films as a function of thickness, initial chemical doping, and initial mobility. Remarkably universal behavior occurs, the mobility first increasing with electron density to ∼1020 cm−3 before decreasing slightly. This trend is quantitatively analyzed at cryogenic and room temperatures using analytical models for phonon, ionized impurity, charged dislocation, surface/interface roughness, and electrolyte-induced scattering. The mobility maximum is thus understood to arise from competition between charged impurity/dislocation scattering and electrolyte scattering. The gate-voltage-induced mobility enhancement is found as large as 2000%, realizing 300 K mobility up to 140 cm2 V−1 s−1. This work thus significantly advances the understanding of mobility-limiting scattering processes in BaSnO3, resulting in outstanding room temperature mobilities.more » « less
-
We report our studies of the thickness dependence of electrical resistivity and lattice constants in strained epitaxial thin films of calcium manganese oxide. Our results indicate the potential of bi-axial lattice mismatch strain as a handle for modulating electrical resistivity. We observe thickness dependence of lattice constants consistent with what is expected for strain relaxation for films thicker than 400 Å. At lower thickness values, anomalies are observed suggestive of reduced oxygen stoichiometry. We observe a remarkable decrease in electrical resistivity with decreasing film thickness. The resistivity of our thinnest films (5–7 nm) is about three orders of magnitude lower than the resistivity of bulk CaMnO3. Resistivity increases as the film thickness increases, along with the progression of strain relaxation. It is noteworthy that the thickness dependence of resistivity we observe in CMO thin films is the opposite of what has been reported for their hole-doped rare earth manganite counterpart La0.67Ca0.33MnO3 (LCMO), where tensile lattice mismatch strain suppresses metallicity, leading to the increase in resistivity with film thickness. We believe that the enhanced conductivity in our thinnest films is related to the possible oxygen deficiency promoted by tensile strain. Recent x-ray absorption measurements have revealed reduced oxygen content and associated changes in Mn valence states in tensile-strained CMO thin films, as also predicted by density functional theory calculations. This report is the first observation of electrical transport behavior possibly indicative of strain–oxygen stoichiometry coupling.more » « less
An official website of the United States government
