skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Growth of PdCoO2 films with controlled termination by molecular-beam epitaxy and determination of their electronic structure by angle-resolved photoemission spectroscopy
Utilizing the powerful combination of molecular-beam epitaxy (MBE) and angle-resolved photoemission spectroscopy (ARPES), we produce and study the effect of different terminating layers on the electronic structure of the metallic delafossite PdCoO2. Attempts to introduce unpaired electrons and synthesize new antiferromagnetic metals akin to the isostructural compound PdCrO2 have been made by replacing cobalt with iron in PdCoO2 films grown by MBE. Using ARPES, we observe similar bulk bands in these PdCoO2 films with Pd-, CoO2-, and FeO2-termination. Nevertheless, Pd- and CoO2-terminated films show a reduced intensity of surface states. Additionally, we are able to epitaxially stabilize PdFexCo1−xO2 films that show an anomaly in the derivative of the electrical resistance with respect to temperature at 20 K, but do not display pronounced magnetic order.  more » « less
Award ID(s):
2104427 1719875 2150446
PAR ID:
10594718
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Materials
Volume:
10
Issue:
9
ISSN:
2166-532X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the use of suboxide molecular-beam epitaxy (S-MBE) to grow α-(AlxGa1−x)2O3 films on (110) sapphire substrates over the 0 < x < 0.95 range of aluminum content. In S-MBE, 99.98% of the gallium-containing molecular beam arrives at the substrate in a preoxidized form as gallium suboxide (Ga2O). This bypasses the rate-limiting step of conventional MBE for the growth of gallium oxide (Ga2O3) from a gallium molecular beam and allows us to grow fully epitaxial α-(AlxGa1−x)2O3 films at growth rates exceeding 1 µm/h and relatively low substrate temperature (Tsub = 605 ± 15 °C). The ability to grow α-(AlxGa1−x)2O3 over the nominally full composition range is confirmed by Vegard’s law applied to the x-ray diffraction data and by optical bandgap measurements with ultraviolet–visible spectroscopy. We show that S-MBE allows straightforward composition control and bandgap selection for α-(AlxGa1−x)2O3 films as the aluminum incorporation x in the film is linear with the relative flux ratio of aluminum to Ga2O. The films are characterized by atomic-force microscopy, x-ray diffraction, and scanning transmission electron microscopy (STEM). These α-(AlxGa1−x)2O3 films grown by S-MBE at record growth rates exhibit a rocking curve full width at half maximum of ≊ 12 arc secs, rms roughness <1 nm, and are fully commensurate for x ≥ 0.5 for 20–50 nm thick films. STEM imaging of the x = 0.78 sample reveals high structural quality and uniform composition. Despite the high structural quality of the films, our attempts at doping with silicon result in highly insulating films. 
    more » « less
  2. Abstract The making of BaZrS3thin films by molecular beam epitaxy (MBE) is demonstrated. BaZrS3forms in the orthorhombic distorted‐perovskite structure with corner‐sharing ZrS6octahedra. The single‐step MBE process results in films smooth on the atomic scale, with near‐perfect BaZrS3stoichiometry and an atomically sharp interface with the LaAlO3substrate. The films grow epitaxially via two competing growth modes: buffered epitaxy, with a self‐assembled interface layer that relieves the epitaxial strain, and direct epitaxy, with rotated‐cube‐on‐cube growth that accommodates the large lattice constant mismatch between the oxide and the sulfide perovskites. This work sets the stage for developing chalcogenide perovskites as a family of semiconductor alloys with properties that can be tuned with strain and composition in high‐quality epitaxial thin films, as has been long‐established for other systems including Si‐Ge, III‐Vs, and II‐VIs. The methods demonstrated here also represent a revival of gas‐source chalcogenide MBE. 
    more » « less
  3. We report the use of suboxide molecular-beam epitaxy (S-MBE) to grow β-Ga2O3 at a growth rate of ∼1 µm/h with control of the silicon doping concentration from 5 × 1016 to 1019 cm−3. In S-MBE, pre-oxidized gallium in the form of a molecular beam that is 99.98% Ga2O, i.e., gallium suboxide, is supplied. Directly supplying Ga2O to the growth surface bypasses the rate-limiting first step of the two-step reaction mechanism involved in the growth of β-Ga2O3 by conventional MBE. As a result, a growth rate of ∼1 µm/h is readily achieved at a relatively low growth temperature (Tsub ≈ 525 °C), resulting in films with high structural perfection and smooth surfaces (rms roughness of <2 nm on ∼1 µm thick films). Silicon-containing oxide sources (SiO and SiO2) producing an SiO suboxide molecular beam are used to dope the β-Ga2O3 layers. Temperature-dependent Hall effect measurements on a 1 µm thick film with a mobile carrier concentration of 2.7 × 1017 cm−3 reveal a room-temperature mobility of 124 cm2 V−1 s−1 that increases to 627 cm2 V−1 s−1 at 76 K; the silicon dopants are found to exhibit an activation energy of 27 meV. We also demonstrate working metal–semiconductor field-effect transistors made from these silicon-doped β-Ga2O3 films grown by S-MBE at growth rates of ∼1 µm/h. 
    more » « less
  4. Ultra-high purity elemental sources have long been considered a prerequisite for obtaining low impurity concentrations in compound semiconductors in the world of molecular beam epitaxy (MBE) since its inception in 1968. However, we demonstrate that a “dirty” solid precursor, ruthenium(III) acetylacetonate [also known as Ru(acac)3], can yield single-phase, epitaxial, and superconducting Sr2RuO4 films with the same ease and control as III–V MBE. A superconducting transition was observed at ∼0.9 K, suggesting a low defect density and a high degree of crystallinity in these films. In contrast to the conventional MBE, which employs the ultra-pure Ru metal evaporated at ∼2000 °C as a Ru source, along with reactive ozone to obtain Ru → Ru4+ oxidation, the use of the Ru(acac)3 precursor significantly simplifies the MBE process by lowering the temperature for Ru sublimation (less than 200 °C) and by eliminating the need for ozone. Combining these results with the recent developments in hybrid MBE, we argue that leveraging the precursor chemistry will be necessary to realize next-generation breakthroughs in the synthesis of atomically precise quantum materials. 
    more » « less
  5. MnO(001) thin films were grown on commercial MgO(001) substrates at 520 °C by reactive molecular beam epitaxy (MBE) using Mn vapor and O2-seeded supersonic molecular beams (SMBs) both with and without radio frequency (RF) plasma excitation. For comparison, MnO(001) films were grown by reactive MBE using O2 from a leak valve. X-ray photoelectron spectroscopy confirmed the Mn2+ oxidation state and 10%–15% excess oxygen near the growth surface. Reflection high-energy electron diffraction and x-ray diffraction evidenced that the films were rock salt cubic MnO with very strong (001) orientation. High-angle annular dark field scanning transmission electron microscopy with energy-dispersive x-ray spectroscopy demonstrated abrupt MnO/MgO interfaces and indicated [(001)MnO||(001)MgO] epitaxial growth. Ex situ atomic force microscopy of films deposited without RF excitation revealed smooth growth surfaces. An SMB-grown MnO(001) film was converted to Mn3O4 with strong (110) orientation by post-growth exposure to an RF-discharge (RFD) SMB source providing O atoms; the surface of the resultant film contained elongated pits aligned with the MgO110 directions. In contrast, using the RFD-SMB source for growth resulted in MnO(001) films with elongated growth pits and square pyramidal hillocks aligned along the MgO110 and 100 directions, respectively. 
    more » « less