skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Variable temperature probing of minority carrier transport and optical properties in p -Ga2O3
Electron beam-induced current in the temperature range from 304 to 404 K was employed to measure the minority carrier diffusion length in metal–organic chemical vapor deposition-grown p-Ga2O3 thin films with two different concentrations of majority carriers. The diffusion length of electrons exhibited a decrease with increasing temperature. In addition, the cathodoluminescence emission spectrum identified optical signatures of the acceptor levels associated with the VGa−–VO++ complex. The activation energies for the diffusion length decrease and quenching of cathodoluminescence emission with increasing temperature were ascribed to the thermal de-trapping of electrons from VGa−–VO++ defect complexes.  more » « less
Award ID(s):
1856662 1802208
PAR ID:
10594723
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Materials
Volume:
10
Issue:
3
ISSN:
2166-532X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The impact of electron injection, using 10 keV beam of a Scanning Electron Microscope, on minority carrier transport in Si-doped β-Ga2O3 was studied for temperatures ranging from room to 120°C. In-situ Electron Beam-Induced Current technique was employed to determine the diffusion length of minority holes as a function of temperature and duration of electron injection. The experiments revealed a pronounced elongation of hole diffusion length with increasing duration of injection. The activation energy, associated with the electron injection-induced elongation of the diffusion length, was determined at ∼ 74 meV and matches the previous independent studies. It was additionally discovered that an increase of the diffusion length in the regions affected by electron injection is accompanied by a simultaneous decrease of cathodoluminescence intensity. Both effects were attributed to increasing non-equilibrium hole lifetime in the valence band of β-Ga2O3 semiconductor. 
    more » « less
  2. Minority carrier diffusion length in undoped p-type gallium oxide was measured at various temperatures as a function of electron beam charge injection by electron beam-induced current technique in situ using a scanning electron microscope. The results demonstrate that charge injection into p-type β-gallium oxide leads to a significant linear increase in minority carrier diffusion length followed by its saturation. The effect was ascribed to trapping of non-equilibrium electrons (generated by a primary electron beam) on metastable native defect levels in the material, which in turn blocks recombination through these levels. While previous studies of the same material were focused on probing a non-equilibrium carrier recombination by purely optical means (cathodoluminescence), in this work, the impact of charge injection on minority carrier diffusion was investigated. The activation energy of ∼0.072 eV, obtained for the phenomenon of interest, is consistent with the involvement of Ga vacancy-related defects. 
    more » « less
  3. Abstract Recent observations have shown that the atmospheres of ultrahot Jupiters (UHJs) commonly possess temperature inversions, where the temperature increases with increasing altitude. Nonetheless, which opacity sources are responsible for the presence of these inversions remains largely observationally unconstrained. We used LBT/PEPSI to observe the atmosphere of the UHJ KELT-20 b in both transmission and emission in order to search for molecular agents which could be responsible for the temperature inversion. We validate our methodology by confirming a previous detection of Feiin emission at 16.9σ. Our search for the inversion agents TiO, VO, FeH, and CaH results in non-detections. Using injection-recovery testing we set 4σupper limits upon the volume mixing ratios for these constituents as low as ∼1 × 10−9for TiO. For TiO, VO, and CaH, our limits are much lower than expectations from an equilibrium chemical model, while we cannot set constraining limits on FeH with our data. We thus rule out TiO and CaH as the source of the temperature inversion in KELT-20 b, and VO only if the line lists are sufficiently accurate. 
    more » « less
  4. It has recently been demonstrated that electron beam injection into p-type β-gallium oxide leads to a significant linear increase in minority carrier diffusion length with injection duration, followed by its saturation. The effect was ascribed to trapping of non-equilibrium electrons (generated by a primary electron beam) at meta-stable native defect levels in the material, which in turn blocks recombination through these levels. In this work, in contrast to previous studies, the effect of electron injection in p-type Ga2O3 was investigated using cathodoluminescence technique in situ in scanning electron microscope, thus providing insight into minority carrier lifetime behavior under electron beam irradiation. The activation energy of ∼0.3 eV, obtained for the phenomenon of interest, is consistent with the involvement of Ga vacancy-related defects. 
    more » « less
  5. While a number of O-H and O-D vibrational lines have been observed for hydrogen and deuterium in β-Ga2O3, it has been commonly reported that there is no absorption with a component of the polarization E parallel to the [010], or b, axis. This experimental result has led to O-H defect structures that involve shifted configurations of a vacancy at the tetrahedrally coordinated Ga(1) site [VGa(1)] and have ruled out structures that involve a vacancy at the octahedrally coordinated Ga(2) site [VGa(2)], because these structures are predicted to show absorption for E//[010]. In this Letter, weak O-D lines at 2475 and 2493 cm−1 with a component of their polarization with E//[010] are reported for β-Ga2O3 that had been annealed in a D2 ambient. O-D defect structures involving an unshifted VGa(2) are proposed for these centers. An estimate is made that the concentration of VGa(2) in a Czochralski-grown sample is 2–3 orders of magnitude lower than that of VGa(1) from the intensities of the IR absorption lines. 
    more » « less