skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermoelectric transport at F4TCNQ–silicon interface
Hybrid organic-inorganic materials are among the latest class of materials proposed for thermoelectric applications. The organic-inorganic interface is critical in determining the effective transport properties of the hybrid material. We study the thermoelectric properties of the tetrafluoro-tetracyanoquinodimethane (F4TCNQ)–silicon interface. Transfer of electrons from silicon to F4TCNQ results in holes trapped within the screening length of the interface that can move parallel to the interface. We measure the response of these trapped charges to applied temperature differential and compare the thermoelectric transport properties of the silicon with and without F4TCNQ. The results confirm the presence of interface charges and demonstrate an enhanced interface thermoelectric power factor. These outcomes of this study could be used in designing 3D hybrid structures with closely packed interfaces to replicate a bulk thermoelectric material.  more » « less
Award ID(s):
1400246
PAR ID:
10594727
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Materials
Volume:
7
Issue:
2
ISSN:
2166-532X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Conjugated polymer‐based block copolymers (CP‐BCPs) are an unexplored class of materials for organic thermoelectrics. Herein, the authors report on the electronic conductivity (σ) and Seebeck coefficient (α) of a newly synthesized CP‐BCP, poly(3‐hexylthiophene)‐block‐poly (oligo‐oxyethylene methacrylate) (P3HT‐b‐POEM), upon solution co‐processing with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and subsequently vapor‐doping with a molecular dopant, 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ). It is found that the addition of the hydrophilic block POEM greatly enhances the processability of P3HT, enabling homogeneous solution‐mixing with LiTFSI. Notably, interactions between P3HT‐b‐POEM with ionic species significantly improve molecular order and unexpectedly cause electrical oxidizing doping of P3HT block both in solution and solid‐states, a phenomenon that has not been previously observed in Li‐salt containing P3HT. Vapor doping of P3HT‐b‐POEM‐LiTFSI thin films with F4TCNQ further enhances σ and yields a thermoelectric power factorPF=α2σ of 13.0 µW m−1 K−2, which is more than 20 times higher than salt‐free P3HT‐b‐POEM sample. Through modeling thermoelectric behaviors of P3HT‐b‐POEM with the Kang‐Snyder transport model, the improvement inPFis attributed to higher electronic charge mobility originating from the enhanced molecular ordering of P3HT. The results demonstrate that solution co‐processing CP‐BCPs with a salt is a powerful method to control structure and performance of organic thermoelectric materials. 
    more » « less
  2. We experimentally demonstrate the heterogeneous integration of ferroelectric hafnium zirconium oxide (HZO) with a silicon photonic microring resonator and demonstrate two non-volatile states for data storage by switching the polarization of HZO. Capped by transparent conducting titanium doped indium oxide (ITiO), the device functions as a metal insulator semiconductor (MIS) capacitor and utilizes the refractive index modulation via carrier (hole) accumulation and the effect of trapped charges at the ferroelectric–silicon interface to create the non-volatile binary switching states. In contrast to electronic devices where trapped charges at the silicon–ferroelectric interface reduce the memory window, in our ferrophotonic device, trapped charges amplify the refractive index difference in the binary states due to effective screening of the silicon in inversion. By switching the applied bias from negative to positive, the optical power transmitted through the ring switches with 3.5 dB output power difference between the non-volatile set and reset states and 40 pJ switching energy at ±8 V. Preliminary results suggest a path toward achieving sub-1 V non-volatile ferrophotonic switching. 
    more » « less
  3. Advances in interface science over the last 20 years have demonstrated the use of molecular nanolayers (MNLs) at inorganic interfaces to access emergent phenomena and enhance a variety of interfacial properties. Here, we capture important aspects of how a MNL can induce multifold enhancements and tune multiple interfacial properties, including chemical stability, fracture energy, thermal and electrical transport, and electronic structure. Key challenges that need to be addressed for the maturation of this emerging field are described and discussed. MNL-induced interfacial engineering has opened up attractive opportunities for designing organic–inorganic hybrid nanomaterials with high interface fractions, where properties are determined predominantly by MNL-induced interfacial effects for applications. 
    more » « less
  4. Two-dimensional hybrid metal-halide perovskites (2D-MHPs) have emerged as important solution-processed semiconductors with favorable optical and electronic properties for diverse applications in photovoltaics, optoelectronics, and spintronics. The quasi-2D layered structures, featuring large acoustic impedance mismatches between the organic and inorganic sublattices, are expected to result in distinct and anisotropic thermal transport properties along the cross-plane and in-plane directions. Here, we introduce transducer-free vibrational-pump-visible-probe (VPVP) approaches that enable accurate quantification of anisotropic thermal transport properties in various archetypical single-crystalline 2D-MHPs. Specifically, using VPVP spectroscopy and VPVP microscopy, we measure the anisotropic thermal diffusivities of 2D-MHPs with systematically varied Pb-I octahedral layer thicknesses, as well as organic spacer types and lengths, revealing how these structural parameters alter the cross-plane and in-plane thermal transport properties in distinct ways. While diffuse interface scattering plays an important role in dictating cross-plane thermal transport, in-plane thermal transport is primarily determined by phonon transport within interconnected inorganic layers. Density functional theory incorporating four-phonon scatterings provides further insight into the low thermal conductivity and modest thermal conduction anisotropy in 2D-MHPs. Our work demonstrates a new all-optical and noncontact method, which requires minimal sample preparation and allows direct visualization of cross-plane and in-plane thermal transport, potentially compatible with sample environments. The demonstrated VPVP approaches can advance understanding of thermal transport in 2D-MHPs as well as wide-ranging hybrid and polymeric semiconductors beyond 2D-MHPs. 
    more » « less
  5. null (Ed.)
    Incorporation of polar side chains on organic semiconducting materials have been used recently in thermoelectric materials to increase dopant:semiconductor miscibility and stability to further increase the performance and durability of devices. However, investigations into how polar side chains can affect the structure and energetics of polythiophenes compared to non-polar alkyl side chains are usually carried out using materials with no common morphological structure. Within this work we systematically investigate the increase in polar side chain content on poly(3-hexylthiophene) (P3HT) and how the optical, electrochemical, and structural properties are affected. We find a decreasing degree of aggregation with increasing polar side chain content leading to lower charge carrier mobilities. Upon doping with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), we find that the electrical conductivity is reduced when incorporating the polar side chain and no stabilising effect is demonstrated when annealing the doped thin films at raised temperatures. This study emphasises that polar functionalities do not always increase dopant:semiconductor interactions and can harm desirable structural and electrical characteristics, and therefore should be incorporated into organic semiconductors with caution. 
    more » « less