skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transition from intrinsic to extrinsic anomalous Hall effect in the ferromagnetic Weyl semimetal PrAlGe1− x Si x
Recent reports of a large anomalous Hall effect (AHE) in ferromagnetic Weyl semimetals (FM WSMs) have led to a resurgence of interest in this enigmatic phenomenon. However, due to a lack of tunable materials, the interplay between the intrinsic mechanism caused by Berry curvature and extrinsic mechanisms due to scattering remains unclear in FM WSMs. In this contribution, we present a thorough investigation of both the extrinsic and intrinsic AHEs in a new family of FM WSMs, PrAlGe1−xSix, where x can be tuned continuously. Based on the first-principles calculations, we show that the two end members, PrAlGe and PrAlSi, have different Fermi surfaces, but similar Weyl node structures. Experimentally, we observe moderate changes in the anomalous Hall coefficient (RS), but significant changes in the ordinary Hall coefficient (R0) in PrAlGe1−xSix as a function of x. By comparing the magnitude of R0 and RS, we identify two regimes: |R0| < |RS| for x ≤ 0.5 and |R0| > |RS| for x > 0.5. Through a detailed scaling analysis, we uncover a universal anomalous Hall conductivity (AHC) from intrinsic contribution when x ≤ 0.5. Such a universal AHC is absent for x > 0.5. Our study, thus, reveals the significance of extrinsic mechanisms in FM WSMs and reports the first observation of the transition from the intrinsic to extrinsic AHE in PrAlGe1−xSix.  more » « less
Award ID(s):
1708929
PAR ID:
10594890
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Materials
Volume:
8
Issue:
1
ISSN:
2166-532X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The anomalous Hall effect (AHE), typically observed in ferromagnetic (FM) metals with broken time-reversal symmetry, depends on electronic and magnetic properties. In Co3Sn2-xInxS2, a giant AHE has been attributed to Berry curvature associated with the FM Weyl semimetal phase, yet recent studies report complicated magnetism. We use neutron scattering to determine the spin dynamics and structures as a function ofxand provide a microscopic understanding of the AHE and magnetism interplay. Spin gap and stiffness indicate a contribution from Weyl fermions consistent with the AHE. The magnetic structure evolves fromc-axis ferromagnetism at$$x = 0$$ x = 0 to a canted antiferromagnetic (AFM) structure with reducedc-axis moment and in-plane AFM order at$$x = 0.12$$ x = 0.12 and further reducedc-axis FM moment at$$x = 0.3$$ x = 0.3 . Since noncollinear spins can induce non-zero Berry curvature in real space acting as a fictitious magnetic field, our results revealed another AHE contribution, establishing the impact of magnetism on transport. 
    more » « less
  2. Abstract Proposed mechanisms for large intrinsic anomalous Hall effect (AHE) in magnetic topological semimetals include diverging Berry curvatures of Weyl nodes, anticrossing nodal rings or points of non-trivial bands. Here we demonstrate that a half-topological semimetal (HTS) state near a topological critical point can provide an alternative mechanism for a large AHE via systematic studies on an antiferromagnetic (AFM) half-Heusler compound TbPdBi. We not only observe a large AHE with tanΘH≈ 2 in its field-driven ferromagnetic (FM) phase, but also find a distinct Hall resistivity peak in its canted AFM phase. Moreover, we observe a large negative magnetoresistance with a value of ~98%. Our in-depth theoretical modelling indicates that these exotic transport properties originate from the HTS state which exhibits Berry curvature cancellation between the trivial spin-up and nontrivial spin-down bands. Our study offers alternative strategies for improved materials design for spintronics and other applications. 
    more » « less
  3. Abstract Covalent 2D magnets such as Cr2Te3, which feature self‐intercalated magnetic cations located between monolayers of transition‐metal dichalcogenide material, offer a unique platform for controlling magnetic order and spin texture, enabling new potential applications for spintronic devices. Here, it is demonstrated that the unconventional anomalous Hall effect (AHE) in Cr2Te3, characterized by additional humps and dips near the coercive field in AHE hysteresis, originates from an intrinsic mechanism dictated by the self‐intercalation. This mechanism is distinctly different from previously proposed mechanisms such as topological Hall effect, or two‐channel AHE arising from spatial inhomogeneities. Crucially, multiple Weyl‐like nodes emerge in the electronic band structure due to strong spin‐orbit coupling, whose positions relative to the Fermi level is sensitively modulated by the canting angles of the self‐intercalated Cr cations. These nodes contribute strongly to the Berry curvature and AHE conductivity. This component competes with the contribution from bands that are less affected by the self‐intercalation, resulting in a sign change in AHE with temperature and the emergence of additional humps and dips. The findings provide compelling evidence for the intrinsic origin of the unconventional AHE in Cr2Te3 and further establish self‐intercalation as a control knob for engineering AHE in complex magnets. 
    more » « less
  4. The studies of topological insulators (TI) and topological semimetals have been at frontiers of condensed matter physics and material science. Both classes of materials are characterized by robust surface states created by the topology of the bulk band structures and exhibit exotic transport properties. When magnetism is present in topological materials and breaks the time-reversal symmetry, more exotic quantum phenomena can be generated, e.g., quantum anomalous Hall effect (QAHE), axion insulator, and large intrinsic AHE. In this research update, we briefly summarize the recent research progress in magnetic topological materials, including intrinsic magnetic TI and magnetic Weyl semimetals. 
    more » « less
  5. Three-dimensional (3D) topological semimetals represent a new class of topological matters. The study of this family of materials has been at the frontiers of condensed matter physics, and many breakthroughs have been made. Several topological semimetal phases, including Dirac semimetals (DSMs), Weyl semimetals (WSMs), nodal-line semimetals (NLSMs), and triple-point semimetals, have been theoretically predicted and experimentally demonstrated. The low-energy excitation around the Dirac/Weyl nodal points, nodal line, or triply degenerated nodal point can be viewed as emergent relativistic fermions. Experimental studies have shown that relativistic fermions can result in a rich variety of exotic transport properties, e.g., extremely large magnetoresistance, the chiral anomaly, and the intrinsic anomalous Hall effect. In this review, we first briefly introduce band structural characteristics of each topological semimetal phase, then review the current studies on quantum oscillations and exotic transport properties of various topological semimetals, and finally provide a perspective of this area. 
    more » « less