It is well known that in the high-temperature superconductor YBa2Cu3O7-x (YBCO), oxygen vacancies (VO) control the carrier concentration, its critical current density and transition temperature. In this work, it is revealed that VO also allow the accommodation of local strain fields caused by large-scale defects within the crystal. We show that the nanoscale strain associated with Y2Ba4Cu8O18 (Y124) intergrowths—that are common defects in YBCO—strongly affect the venue and concentration of VO. Local probe measurements in conjunction with density-functional-theory calculations indicate a strain‐driven reordering of VO from the commonly observed CuO chains towards the bridging apical sites located in the BaO plane and bind directly to the superconducting CuO2 planes. Our findings have strong implications on the physical properties of the YBCO, as the presence of apical VO alters the transfer of carriers to the CuO2 planes and creates structural changes that affect the Cu-O bonds in the superconducting planes. In addition, the revelation of apical VO also has implications on modulating critical current densities and enhancing vortex pinning.
more »
« less
High-transition-temperature nanoscale superconducting quantum interference devices directly written with a focused helium ion beam
In this work, we present nanoscale superconducting quantum interference devices (SQUIDs) with dimensions as small as 10 nm from the high-transition-temperature superconductor YBa2Cu3O7−δ (YBCO). The SQUID features and Josephson junctions are directly written into a 35-nm thick YBCO film with a focused helium ion beam. We integrate these nano-SQUIDs with directly written nano-isolated inductively coupled control lines to demonstrate a low power superconducting output driver capable of transimpedance conversion over a very wide temperature range of 4–50 K.
more »
« less
- Award ID(s):
- 1664446
- PAR ID:
- 10594898
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 116
- Issue:
- 7
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Direct write patterning of high-transition temperature (high-TC) superconducting oxide thin films with a focused helium ion beam is a formidable approach for the scaling of high-TC circuit feature sizes down to the nanoscale. In this letter, we report using this technique to create a sensitive micro superconducting quantum interference device (SQUID) magnetometer with a sensing area of about 100 × 100 μm2. The device is fabricated from a single 35-nm thick YBa2Cu3O7−δ film. A flux concentrating pick-up loop is directly coupled to a 10 nm × 20 μm nano-slit SQUID. The SQUID is defined entirely by helium ion irradiation from a gas field ion source. The irradiation converts the superconductor to an insulator, and no material is milled away or etched. In this manner, a very narrow non-superconducting nano-slit is created entirely within the plane of the film. The narrow slit dimension allows for maximization of the coupling to the field concentrator. Electrical measurements reveal a large 0.35 mV modulation with a magnetic field. We measure a white noise level of 2 μΦ0/Hz1∕2. The field noise of the magnetometer is 4 pT/Hz1∕2 at 4.2 K.more » « less
-
We have grown and characterized (110)-oriented YBa2Cu3O7−x (YBCO)/PrBa2(Cu0.8Ga0.2)3O7−x (PBCGO) bilayer and YBCO/PBCGO/YBCO trilayer heterostructures, which were deposited by pulsed laser deposition technique for the nanofabrication of (110)-oriented YBCO-based superconductor (S)/insulator (I)/superconductor (S) tunneling vertical geometry Josephson junction and other superconductor electronic devices. The structural properties of these heterostructures, investigated through various x-ray diffraction techniques (profile, x-ray reflectivity, pole figure, and reciprocal mapping), showed (110)-oriented epitaxial growth with a preferred c-axis-in-plane direction for all layers of the heterostructures. The atomic force microscopy measurement on the top surface of the heterostructures showed crack-free and pinhole-free, compact surface morphology with about a few nanometer root mean square roughness over the 5 × 5 μm2 region. The electrical resistivity measurements on the (110)-direction of the heterostructures showed superconducting critical temperature (Tc) values above 77 K and a very small proximity effect due to the interfacial contact of the superconducting YBCO layers with the PBCGO insulating layer. Raman spectroscopy measurements on the heterostructures showed the softening of the Ag-type Raman modes associated with the apical oxygen O(4) and O(2)-O(3)-in-phase vibrations compared to the stand-alone (110)-oriented PBCGO due to the residual stress and additional two Raman modes at ∼600 and ∼285 cm−1 frequencies due to the disorder at the Cu–O chain site of the PBCGO. The growth process and structural, electrical transport, and Raman spectroscopy characterization of (110)-oriented YBCO/PBCGO bilayer and YBCO/PBCGO/YBCO trilayer heterostructures are discussed in detail.more » « less
-
High critical current (Ic) in high magnetic fields (B) with minimal variations with respect to the orientation of the B field is demanded by many applications such as high-field magnets for fusion systems. Motivated by this, this work studies 6 vol. % BaZrO3/YBa2Cu3O7 (BZO/YBCO) multilayer nanocomposite films by stacking two 10 nm thick Ca0.3Y0.7Ba2Cu3O7 (CaY-123) spacers with three BZO/YBCO layers of thickness varied from 50 to 330 nm to make the total film thickness of 150–1000 nm. The Ca diffusion from the spacers into BZO/YBCO was shown to dramatically enhance pinning efficiency of c-axis aligned BZO nanorods, which yields high and almost thickness independent critical current density (Jc) in the BZO/YBCO multilayer nanocomposite films. Remarkably, enhanced Jc was observed in these multilayer samples at a wide temperature range of 20–80 K and magnetic fields up to 9.0 T. In particular, the thicker BZO/YBCO multilayer films outperform their thinner counterparts in both higher value and less anisotropy of Jc at lower temperatures and higher fields. At 20 K and 9.0 T, Ic is up to 654 A/cm-width at B//c in the 6% multilayer (1000 nm) sample, which is close to 753 A/cm-width at B//ab due to the intrinsic pinning. This result illustrates the critical role of the Ca cation diffusion into the YBCO lattice in achieving high and isotropic pinning in thick BZO/YBCO multilayer films.more » « less
-
Abstract In this article, we present a nanoelectromechanical system (NEMS) designed to detect changes in the Casimir energy. The Casimir effect is a result of the appearance of quantum fluctuations in an electromagnetic vacuum. Previous experiments have used nano- or microscale parallel plate capacitors to detect the Casimir force by measuring the small attractive force these fluctuations exert between the two surfaces. In this new set of experiments, we aim to directly detect the shifts in the Casimir energy in a vacuum due to the presence of the metallic parallel plates, one of which is a superconductor. A change in the Casimir energy of this configuration is predicted to shift the superconducting transition temperature (Tc) because of the interaction between it and the superconducting condensation energy. In our experiment, we take a superconducting film, carefully measure its transition temperature, bring a conducting plate close to the film, create a Casimir cavity, and then measure the transition temperature again. The expected shifts are smaller than the normal shifts one sees in cycling superconducting films to cryogenic temperatures, so using a NEMS resonator in situ is the only practical way to obtain accurate, reproducible data. Using a thin Pb film and opposing Au surface, we observe no shift inTc>12 µK down to a minimum spacing of ~70 nm at zero applied magnetic field.more » « less
An official website of the United States government
