skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiscale electric-field imaging of polarization vortex structures in PbTiO3/SrTiO3 superlattices
In ferroelectric heterostructures, the interaction between intrinsic polarization and the electric field generates a rich set of localized electrical properties. The local electric field is determined by several connected factors, including the charge distribution of individual unit cells, the interfacial electromechanical boundary conditions, and chemical composition of the interfaces. However, especially in ferroelectric perovskites, a complete description of the local electric field across micro-, nano-, and atomic-length scales is missing. Here, by applying four-dimensional scanning transmission electron microscopy (4D STEM) with multiple probe sizes matching the size of structural features, we directly image the electric field of polarization vortices in (PbTiO3)16/(SrTiO3)16 superlattices and reveal different electric field configurations corresponding to the atomic scale electronic ordering and the nanoscale boundary conditions. The separability of two different fields probed by 4D STEM offers the possibility to reveal how each contributes to the electronic properties of the film.  more » « less
Award ID(s):
2034738
PAR ID:
10594993
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Materials
Volume:
11
Issue:
5
ISSN:
2166-532X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Spontaneous polarization and crystallographic orientations within ferroelectric domains are investigated using an epitaxially grown BiFeO3thin film under bi-axial tensile strain. Four dimensional-scanning transmission electron microscopy (4D-STEM) and atomic resolution STEM techniques revealed that the tensile strain applied is not enough to cause breakdown of equilibrium BiFeO3symmetry (rhombohedral with space group:R3c). 4D-STEM data exhibit two types of BiFeO3ferroelectric domains: one with projected polarization vector possessing out-of-plane component only, and the other with that consisting of both in-plane and out-of-plane components. For domains with only out-of-plane polarization, convergent beam electron diffraction (CBED) patterns exhibit “extra” Bragg’s reflections (compared to CBED of cubic-perovskite) that indicate rhombohedral symmetry. In addition, beam damage effects on ferroelectric property measurements were investigated by systematically changing electron energy from 60 to 300 keV. 
    more » « less
  2. Abstract Manipulating surface charge, electric field, and plasma afterglow in a non-equilibrium plasma is critical to control plasma-surface interaction for plasma catalysis and manufacturing. Here, we show enhancements of surface charge, electric field during breakdown, and afterglow by ferroelectric barrier discharge. The results show that the ferroelectrics manifest spontaneous electric polarization to increase the surface charge by two orders of magnitude compared to discharge with an alumina barrier. Time-resolved in-situ electric field measurements reveal that the fast polarization of ferroelectrics enhances the electric field during the breakdown in streamer discharge and doubles the electric field compared to the dielectric barrier discharge. Moreover, due to the existence of surface charge, the ferroelectric electrode extends the afterglow time and makes discharge sustained longer when alternating the external electric field polarity. The present results show that ferroelectric barrier discharge offers a promising technique to tune plasma properties for efficient plasma catalysis and electrified manufacturing. 
    more » « less
  3. Two-dimensional (2D) electronic materials are of significant technological interest due to their exceptional properties and broad applicability in engineering. The transition from nanoscale physics, which dictates their stable configurations, to macroscopic engineering applications requires the use of multiscale methods to systematically capture their electronic properties at larger scales. A key challenge in coarse-graining is the rapid and near-periodic variation of the charge density, which exhibits significant spatial oscillations at the atomic scale. Therefore, the polarization density field—the first moment of the charge density over the periodic unit cell—is used as a multiscale mediator that enables efficient coarse-graining by exploiting the almost-periodic nature of the variation. Unlike the highly oscillatory charge density, the polarization varies over lengthscales that are much larger than the atomic, making it suitable for continuum modeling. In this paper, we investigate the electrostatic potential arising from the charge distribution of arbitrarily-deformed 2D materials. Specifically, we consider a sequence of problems wherein the underlying lattice spacing vanishes and thus obtain the continuum limit. We consider three distinct limits: where the thickness is much smaller than, comparable to, and much larger than the in-plane lattice spacing. These limiting procedures provide the homogenized potential expressed in terms of the boundary charge and dipole distribution, subject to the appropriate boundary conditions that are also obtained through the limit process. Furthermore, we demonstrate that despite the intrinsic non-uniqueness in the definition of polarization, accounting for the boundary charges ensures that the total electrostatic potential, the associated electric field, and the corresponding energy of the homogenized system are uniquely determined. 
    more » « less
  4. null (Ed.)
    The surface chemistry and physics of oxide ferroelectric surfaces with a fixed polarization state have been studied experimentally for some time. Here, we discuss the possibility of using these materials in a different mode, namely under cyclically changing polarization conditions achievable via periodic perturbations by external fields ( e.g. , temperature, strain or electric field). We use Density Functional Theory (DFT) and electronic structure analysis to understand the polarization-dependent surface physics and chemistry of ferroelectric oxide PbTiO 3 as an example of this class of materials. This knowledge is then applied to design catalytic cycles for industrially important reactions including NO x direct decomposition and SO 2 oxidation into SO 3 . The possibility of catalyzing direct partial oxidation of methane to methanol is also investigated. More generally, we discuss how using ferroelectrics under cyclically changing polarization conditions can help overcome some of the fundamental challenges facing the catalysis community such as the limitations imposed by the Sabatier principle and scaling relations. 
    more » « less
  5. null (Ed.)
    Indium Selenide (In 2 Se 3 ) is a newly emerged van der Waals (vdW) ferroelectric material, which unlike traditional insulating ferroelectric materials, is a semiconductor with a bandgap of about 1.36 eV. Ferroelectric diodes and transistors based on In 2 Se 3 have been demonstrated. However, the interplay between light and electric polarization in In 2 Se 3 has not been explored. In this paper, we found that the polarization in In 2 Se 3 can be programmed by optical stimuli, due to its semiconducting nature, where the photo generated carriers in In 2 Se 3 can alter the screening field and lead to polarization reversal. Utilizing these unique properties of In 2 Se 3 , we demonstrated a new type of multifunctional device based on 2D heterostructures, which can concurrently serve as a logic gate, photodetector, electronic memory and photonic memory. This dual electrical and optical operation of the memories can simplify the device architecture and offer additional functionalities, such as ultrafast optical erase of large memory arrays. In addition, we show that dual-gate structure can address the partial switching problem commonly observed in In 2 Se 3 ferroelectric transistors, as the two gates can enhance the vertical electric field and facilitate the polarization switching in the semiconducting In 2 Se 3 . These discovered effects are of general nature and should be observable in any ferroelectric semiconductor. These findings deepen the understanding of polarization switching and light-polarization interaction in semiconducting ferroelectric materials and open up their applications in multifunctional electronic and photonic devices. 
    more » « less