skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-invasive low charge electron beam time-of-arrival diagnostic using a plasmonics-enhanced photoconductive antenna
The use of a plasmonics-enhanced photoconductive antenna (PCA) optically gated by a near infrared (NIR) pulse enables non-invasive time-of-arrival measurements of a low charge electron beam with respect to the NIR reference, achieving picosecond resolution. The measured signal values show the expected scaling with the beam charge and distance from PCA to the beam axis, as the PCA samples the electric field of the passing electron beam. We operate the device with an NIR spot size much larger than the PCA active-area, resulting in a very simple optical setup and alignment procedure, making the plasmonics-enhanced PCA a preferred alternative to more complex timing diagnostics for applications requiring non-invasive picosecond or sub-picosecond timestamping.  more » « less
Award ID(s):
1734215
PAR ID:
10595043
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Letters
Volume:
113
Issue:
19
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High-power, short-pulse laser-driven fast electrons can rapidly heat and ionize a high-density target before it hydrodynamically expands. The transport of such electrons within a solid target has been studied using two-dimensional (2D) imaging of electron-induced Kα radiation. However, it is currently limited to no or picosecond scale temporal resolutions. Here, we demonstrate femtosecond time-resolved 2D imaging of fast electron transport in a solid copper foil using the SACLA x-ray free electron laser (XFEL). An unfocused collimated x-ray beam produced transmission images with sub-micron and ∼10 fs resolutions. The XFEL beam, tuned to its photon energy slightly above the Cu K-edge, enabled 2D imaging of transmission changes induced by electron isochoric heating. Time-resolved measurements obtained by varying the time delay between the x-ray probe and the optical laser show that the signature of the electron-heated region expands at ∼25% of the speed of light in a picosecond duration. Time-integrated Cu Kα images support the electron energy and propagation distance observed with the transmission imaging. The x-ray near-edge transmission imaging with a tunable XFEL beam could be broadly applicable for imaging isochorically heated targets by laser-driven relativistic electrons, energetic protons, or an intense x-ray beam. 
    more » « less
  2. Minority carrier diffusion length in undoped p-type gallium oxide was measured at various temperatures as a function of electron beam charge injection by electron beam-induced current technique in situ using a scanning electron microscope. The results demonstrate that charge injection into p-type β-gallium oxide leads to a significant linear increase in minority carrier diffusion length followed by its saturation. The effect was ascribed to trapping of non-equilibrium electrons (generated by a primary electron beam) on metastable native defect levels in the material, which in turn blocks recombination through these levels. While previous studies of the same material were focused on probing a non-equilibrium carrier recombination by purely optical means (cathodoluminescence), in this work, the impact of charge injection on minority carrier diffusion was investigated. The activation energy of ∼0.072 eV, obtained for the phenomenon of interest, is consistent with the involvement of Ga vacancy-related defects. 
    more » « less
  3. The design of deep-red to near-infrared (DR-NIR) phosphorescent compounds with high photoluminescence quantum yields ( Φ PL ) is a significant fundamental challenge that impacts applications including optoelectronic devices, imaging, and sensing. Here we show that bis-cyclometalated iridium complexes with electron-rich ancillary ligands can have exceptional quantum yields for DR-NIR phosphorescence (peak λ > 700 nm). Six bis-cyclometalated iridium( iii ) complexes with DR-NIR phosphorescence are described in this work, pairing highly conjugated cyclometalating ligands with electron-rich and sterically encumbered β-ketoiminate (acNac), β-diketiminate (NacNac), and N , N ′-diisopropylbenzamidinate (dipba) ancillary ligands. The photoluminescence spectra and quantum yields are solvent-dependent, consistent with significant charge-transfer character in the emissive excited state. The ancillary ligands perturb the excited-state kinetics relative to closely related compounds, which can lead to enhanced Φ PL values in the DR-NIR region, particularly in toluene solution and in doped polymer films. 
    more » « less
  4. Interactions between short laser pulses and electron bunches determine a wide range of accelerator applications. Finding spatiotemporal overlap between few-micron-sized optical and electron beams is critical, yet there are few routine diagnostics for this purpose. We present a method for achieving spatiotemporal overlap between a picosecond laser pulse and a relativistic sub-ps electron bunch. The method uses the transient change in optical transmission of a Ce:YAG screen upon irradiation with a short electron bunch to co-time the electron and laser beams. We demonstrate and quantify the performance of this method using an inverse Compton source comprised of a 30 MeV electron beam from an X-band linac focused to a 10 μm spot, overlapped with a joule-class picosecond Yb:YAG laser system. This method is applicable to electron beams with few-microjoule bunch energies and uses standard scintillator screens common in electron accelerators. 
    more » « less
  5. The implementation of aberration-corrected electron beam lithography (AC-EBL) in a 200 keV scanning transmission electron microscope (STEM) is a novel technique that could be used for the fabrication of quantum devices based on 2D atomic crystals with single nanometer critical dimensions, allowing to observe more robust quantum effects. In this work we study electron beam sculpturing of nanostructures on suspended graphene field effect transistors using AC-EBL, focusing on the in situ characterization of the impact of electron beam exposure on device electronic transport quality. When AC-EBL is performed on a graphene channel (local exposure) or on the outside vicinity of a graphene channel (non-local exposure), the charge transport characteristics of graphene can be significantly affected due to charge doping and scattering. While the detrimental effect of non-local exposure can be largely removed by vigorous annealing, local-exposure induced damage is irreversible and cannot be fixed by annealing. We discuss the possible causes of the observed exposure effects. Our results provide guidance to the future development of high-energy electron beam lithography for nanomaterial device fabrication. 
    more » « less