skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Landau–Devonshire analysis of strain effects on ferroelectric Al1−xScxN
We present a thermodynamic analysis of the recently discovered nitride ferroelectric materials using the classic Landau–Devonshire approach. Electrostrictive and dielectric stiffness coefficients of Al1−xScxN with a wurtzite structure (6 mm) are determined using a free energy density function assuming a hexagonal parent phase (6/mmm), with the first-order phase transition based on the dielectric stiffness relationships. The results of this analysis show that the strain sensitivity of the energy barrier is one order of magnitude larger than that of the spontaneous polarization in these wurtzite ferroelectrics, yet both are less sensitive to strain compared to classic perovskite ferroelectrics. These analysis results reported here explain experimentally reported sensitivity of the coercive field to elastic strain/stress in Al1−xScxN films and would enable further thermodynamic analysis via phase field simulation and related methods.  more » « less
Award ID(s):
1555015
PAR ID:
10595044
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Letters
Volume:
121
Issue:
4
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A Landau–Devonshire thermodynamic energy density function for ferroelectric wurtzite aluminum scandium nitride (Al1−xScxN) solid solution is developed. It is parametrized using available experimental and theoretical data, enabling the accurate reproduction of composition-dependent ferroelectric properties, such as spontaneous polarization, dielectric permittivity, and piezoelectric constants, for both bulk and thin films. The maximum concentration of Sc for the wurtzite structure to remain ferroelectric is found to be 61 at. %. A detailed analysis of Al1−xScxN thin films reveals that the ferroelectric phase transition and properties are insensitive to substrate strain. This study lays the foundation for quantitative modeling of novel ferroelectric wurtzite solid solutions. 
    more » « less
  2. III-nitrides and related alloys are widely used for optoelectronics and as acoustic resonators. Ferroelectric wurtzite nitrides are of particular interest because of their potential for direct integration with Si and wide bandgap semiconductors and unique polarization switching characteristics; such interest has taken off since the first report of ferroelectric Al1−xScxN alloys. However, the coercive fields needed to switch polarization are on the order of MV/cm, which are 1–2 orders of magnitude larger than oxide perovskite ferroelectrics. Atomic-scale point defects are known to impact the dielectric properties, including breakdown fields and leakage currents, as well as ferroelectric switching. However, very little is known about the native defects and impurities in Al1−xScxN and their effect on the dielectric and ferroelectric properties. In this study, we use first-principles calculations to determine the formation energetics of native defects and unintentional oxygen incorporation and their effects on the polarization switching barriers in Al1−xScxN alloys. We find that nitrogen vacancies are the dominant native defects, and unintentional oxygen incorporation on the nitrogen site is present in high concentrations. They introduce multiple mid-gap states that can lead to premature dielectric breakdown and increased temperature-activated leakage currents in ferroelectrics. We also find that nitrogen vacancy and substitutional oxygen reduce the switching barrier in Al1−xScxN at low Sc compositions. The effect is minimal or even negative (increases barrier) at higher Sc compositions. Unintentional defects are generally considered to adversely affect ferroelectric properties, but our findings reveal that controlled introduction of point defects by tuning synthesis conditions can instead benefit polarization switching in ferroelectric Al1−xScxN at certain compositions. 
    more » « less
  3. Low-energy compute-in-memory architectures promise to reduce the energy demand for computation and data storage. Wurtzite- type ferroelectrics are promising options for both performance and integration with existing semiconductor processes. The Al1-xScxN alloy is among the few tetrahedral materials that exhibit polarization switching, but the electric field required to switch the polarization is too high (few MV/cm). Going beyond binary com- pounds, we explore the search space of multinary wurtzite-type compounds. Through this large-scale search, we identify four prom- ising ternary nitrides and oxides, including Mg2PN3, MgSiN2, Li2SiO3, and Li2GeO3, for future experimental realization and engi- neering. In >90% of the considered multinary materials, we identify unique switching pathways and non-polar structures that are distinct from the commonly assumed switching mechanism in AlN-based materials. Our results disprove the existing design principle based on the reduction of the wurtzite c/a lattice parameter ratio when comparing different chemistries while sup- porting two emerging design principles—ionicity and bond strength. 
    more » « less
  4. AlN-based alloys find widespread application in high-power microelectronics, optoelectronics, and electromechanics. The realization of ferroelectricity in wurtzite AlN-based heterostructural alloys has opened up the possibility of directly integrating ferroelectrics with conventional microelectronics based on tetrahedral semiconductors, such as Si, SiC, and III–Vs, enabling compute-in-memory architectures, high-density data storage, and more. The discovery of AlN-based wurtzite ferroelectrics has been driven to date by chemical intuition and empirical explorations. Here, we demonstrate the computationally-guided discovery and experimental demonstration of new ferroelectric wurtzite Al1−xGdxN alloys. First-principles calculations indicate that the minimum energy pathway for switching changes from a collective to an individual switching process with a lower overall energy barrier, at a rare-earth fraction x with x > 0.10–0.15. Experimentally, ferroelectric switching is observed at room temperature in Al1−xGdxN films with x > 0.12, which strongly supports the switching mechanisms in wurtzite ferroelectrics proposed previously [Lee et al., Sci. Adv. 10, eadl0848 (2024)]. This is also the first demonstration of ferroelectricity in an AlN-based alloy with a magnetic rare-earth element, which could pave the way for additional functionalities such as multiferroicity and opto-ferroelectricity in this exciting class of AlN-based materials. 
    more » « less
  5. Abstract Knowledge of the thermodynamic equilibria and domain structures of ferroelectrics is critical to establishing their structure–property relationships that underpin their applications from piezoelectric devices to nonlinear optics. Here, we establish the strain condition for strain phase separation and polydomain formation and analytically predict the corresponding domain volume fractions and wall orientations of, relatively low symmetry and theoretically more challenging, monoclinic ferroelectric thin films by integrating thermodynamics of ferroelectrics, strain phase equilibria theory, microelasticity, and phase‐field method. Using monoclinic KxNa1 − xNbO3(0.5 < x < 1.0) thin films as a model system, we establish the polydomain strain–strain phase diagrams, from which we identify two types of monoclinic polydomain structures. The analytically predicted strain conditions of formation, domain volume fractions, and domain wall orientations for the two polydomain structures are consistent with phase‐field simulations and in good agreement with experimental results in the literature. The present study demonstrates a general, powerful analytical theoretical framework to predict the strain phase equilibria and domain wall orientations of polydomain structures applicable to both high‐ and low‐symmetry ferroelectrics and provide fundamental insights into the equilibrium domain structures of ferroelectric KxNa1 − xNbO3thin films that are of technology relevance for lead‐free dielectric and piezoelectric applications. 
    more » « less