The ability to achieve highly resistive beta-phase gallium oxide (β-Ga2O3) layers and substrates is critical for β-Ga2O3 high voltage and RF devices. To date, the most common approach involves doping with iron (Fe), which generates a moderately deep acceptor-like defect state located at EC-0.8 eV in the β-Ga2O3 bandgap. Recently, there has been growing interest in alternative acceptors, such as magnesium (Mg) and nitrogen (N), due to their predicted deeper energy levels, which could avoid inadvertent charge modulation during device operation. In this work, a systematic study that makes direct correlations between the introduction of N using ion implantation and the observation of a newly observed deep level at EC-2.9 eV detected by deep-level optical spectroscopy (DLOS) is presented. The concentration of this state displayed a monotonic dependence with N concentration over a range of implant conditions, as confirmed by secondary ion mass spectrometry (SIMS). With a near 1:1 match in absolute N and EC-2.9 eV trap concentrations from SIMS and DLOS, respectively, which also matched the measured removal of free electrons from capacitance-voltage studies, this indicates that N contributes a very efficiently incorporated compensating defect. Density functional theory calculations confirm the assignment of this state to be an N (0/−1) acceptor with a configuration of N occupying the oxygen site III [NO(III)]. The near ideal efficiency for this state to compensate free electrons and its location toward the midgap region of the β-Ga2O3 bandgap demonstrates the potential of N doping as a promising approach for producing semi-insulating β-Ga2O3.
more »
« less
Comprehensive characterization of nitrogen-related defect states in β-Ga2O3 using quantitative optical and thermal defect spectroscopy methods
This study provides a comprehensive analysis of the dominant deep acceptor level in nitrogen-doped beta-phase gallium oxide (β-Ga2O3), elucidating and reconciling the hole emission features observed in deep-level optical spectroscopy (DLOS). The unique behavior of this defect, coupled with its small optical cross section, complicates trap concentration analysis using DLOS, which is essential for defect characterization in β-Ga2O3. A complex feature arises in DLOS results due to simultaneous electron emission to the conduction band and hole emission to the valence band from the same defect state, indicating the formation of two distinct atomic configurations and suggesting metastable defect characteristics. This study discusses the implications of this behavior on DLOS analysis and employs advanced spectroscopy techniques such as double-beam DLOS and optical isothermal measurements to address these complications. The double-beam DLOS method reveals a distinct hole emission process at EV+1.3 eV previously obscured in conventional DLOS. Optical isothermal measurements further characterize this energy level, appearing only in N-doped β-Ga2O3. This enables an estimate of the β-Ga2O3 hole effective mass by analyzing temperature-dependent carrier emission rates. This work highlights the impact of partial trap-filling behavior on DLOS analysis and identifies the presence of hole trapping and emission in β-Ga2O3. Although N-doping is ideal for creating semi-insulating material through the efficient compensation of free electrons, this study also reveals a significant hole emission and migration process within the weak electric fields of the Schottky diode depletion region.
more »
« less
- PAR ID:
- 10595066
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Materials
- Volume:
- 12
- Issue:
- 9
- ISSN:
- 2166-532X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Teherani, Ferechteh H.; Look, David C.; Rogers, David J. (Ed.)Gallium oxide (Ga2O3), an ultra-wide bandgap semiconductor with potential applications in power devices, may be doped with Mg to control the native n-type conductivity. The charge transitions associated with Mg in Mg-doped β-Ga2O3 crystals are studied using photoinduced electron paramagnetic resonance (photo-EPR) spectroscopy to understand the mechanisms that produce stable semi-insulating substrates. The steady state photo-EPR measurements are performed at 130 K by illuminating the samples with photon energy from 0.7 to 4.7 eV. Our results show that there are two transitions associated with Mg in the bandgap: onset of quenching of neutral Mg at 1.5 eV and excitation at 3.0 eV. The quenching threshold is consistent with several DFT predicted values for Mg-/0 level. Therefore, we suggest the quenching is due to transition of an electron from the valence band to the neutral Mg. For photoexcitation, hole capture is the only viable process due to polaronic nature of neutral Mg in Ga2O3. The measurements demonstrate that electron excitation to impurities, such as Fe and Ir, does not contribute to creation of the holes. Further, gallium vacancies must not participate since their characteristic EPR spectrum is never seen. Thus, we speculate that the defects responsible for the hole formation and consequent excitation of the neutral Mg are oxygen vacancies.more » « less
-
null (Ed.)Abstract Monoclinic gallium oxide (β-Ga 2 O 3 ) is attracting intense focus as a material for power electronics, thanks to its ultra-wide bandgap (4.5–4.8 eV) and ability to be easily doped n -type. Because the holes self-trap, the band-edge luminescence is weak; hence, β-Ga 2 O 3 has not been regarded as a promising material for light emission. In this work, optical and structural imaging methods revealed the presence of localized surface defects that emit in the near-UV (3.27 eV, 380 nm) when excited by sub-bandgap light. The PL emission of these centers is extremely bright—50 times brighter than that of single-crystal ZnO, a direct-gap semiconductor that has been touted as an active material for UV devices.more » « less
-
A systematic photoluminescence study of Be‐doped GaN grown by metal‐organic chemical vapor deposition is presented. All Be‐doped samples show the ultraviolet luminescence (UVLBe) band with a maximum at 3.38 eV and the yellow luminescence (YLBe) band with a maximum at ≈2.15 eV in GaN:Be having various concentrations of Be. The UVLBeband is attributed to the shallow state of the BeGaacceptor with a delocalized hole. The YLBeband is caused by a Be‐related defect, possibly the polaronic state of the BeGaacceptor with the charge transition level at 0.3 eV above the valence band. This broad band exhibits unusual properties. In particular, it always shows two steps in its thermal quenching. The second step atT ≈ 200 K is attributed to the emission of holes from the 0.3 eV level to the conduction band. The origin of the first step remains unexplained.more » « less
-
The impact of electron injection, using 10 keV beam of a Scanning Electron Microscope, on minority carrier transport in Si-doped β-Ga2O3 was studied for temperatures ranging from room to 120°C. In-situ Electron Beam-Induced Current technique was employed to determine the diffusion length of minority holes as a function of temperature and duration of electron injection. The experiments revealed a pronounced elongation of hole diffusion length with increasing duration of injection. The activation energy, associated with the electron injection-induced elongation of the diffusion length, was determined at ∼ 74 meV and matches the previous independent studies. It was additionally discovered that an increase of the diffusion length in the regions affected by electron injection is accompanied by a simultaneous decrease of cathodoluminescence intensity. Both effects were attributed to increasing non-equilibrium hole lifetime in the valence band of β-Ga2O3 semiconductor.more » « less
An official website of the United States government
