skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Disentangling types of lattice disorder impacting superconductivity in Sr2RuO4 by quantitative local probes
The unconventional superconductivity in Sr2RuO4 is infamously susceptible to suppression by small levels of disorder such that it has been most commonly studied in extremely high-purity bulk crystals. Here, we harness local structural and spectroscopic scanning transmission electron microscopy measurements in epitaxial thin films of Sr2RuO4 to disentangle the impact of different types of crystalline disorder on superconductivity. We find that cation off-stoichiometry during growth gives rise to two distinct types of disorder: mixed-phase structural inclusions that accommodate excess ruthenium and ruthenium vacancies when the growth is ruthenium-deficient. Several superconducting films host mixed-phase intergrowths, suggesting this microstructural disorder has relatively little impact on superconductivity. In a non-superconducting film, on the other hand, we measure a high density of ruthenium-vacancies (∼14%) with no significant reduction in the crystallinity of the film. The results suggest that ruthenium vacancy disorder, which is hidden to many structural probes, plays an important role in suppressing superconductivity. We discuss the broader implications of our findings to guide the future synthesis of this and other layered systems.  more » « less
Award ID(s):
2039380 2104427
PAR ID:
10595076
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Materials
Volume:
10
Issue:
4
ISSN:
2166-532X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the growth of superconducting Sr2RuO4 thin films by molecular-beam epitaxy on (110) NdGaO3 substrates with transition temperatures of up to 1.8 K. We calculate and experimentally validate a thermodynamic growth window for the adsorption-controlled growth of superconducting Sr2RuO4 epitaxial thin films. The growth window for achieving superconducting Sr2RuO4 thin films is narrow in growth temperature, oxidant pressure, and ruthenium-to-strontium flux ratio. 
    more » « less
  2. We investigate the effects of disorder characterizing a superconducting thin film on the proximity-induced superconductivity generated by the film (in, e.g., a semiconductor) based on the exact numerical analysis of a three-dimensional microscopic model. To make the problem numerically tractable, we use a recursive Green’s function method in combination with a “patching approach” that exploits the short-range nature of the interface Green’s function in the presence of disorder. As a result of the Fermi surface mismatch between the superconductor (SC) and the semiconductor (SM) in combination with the confinement-induced quantization of the transverse SC modes, the proximity effect induced by a clean SC film is typically one to three orders of magnitude smaller that the corresponding quantity for a bulk SC and exhibits huge thickness-dependent variations. The presence of disorder has competing effects: on the one hand, it enhances the proximity-induced superconductivity and suppresses its strong thickness dependence, on the other hand, it generates proximity-induced effective disorder in the SM. The effect of proximity-induced disorder on the topological superconducting phase and the associated Majorana modes is studied nonperturbatively. 
    more » « less
  3. Ultra-high purity elemental sources have long been considered a prerequisite for obtaining low impurity concentrations in compound semiconductors in the world of molecular beam epitaxy (MBE) since its inception in 1968. However, we demonstrate that a “dirty” solid precursor, ruthenium(III) acetylacetonate [also known as Ru(acac)3], can yield single-phase, epitaxial, and superconducting Sr2RuO4 films with the same ease and control as III–V MBE. A superconducting transition was observed at ∼0.9 K, suggesting a low defect density and a high degree of crystallinity in these films. In contrast to the conventional MBE, which employs the ultra-pure Ru metal evaporated at ∼2000 °C as a Ru source, along with reactive ozone to obtain Ru → Ru4+ oxidation, the use of the Ru(acac)3 precursor significantly simplifies the MBE process by lowering the temperature for Ru sublimation (less than 200 °C) and by eliminating the need for ozone. Combining these results with the recent developments in hybrid MBE, we argue that leveraging the precursor chemistry will be necessary to realize next-generation breakthroughs in the synthesis of atomically precise quantum materials. 
    more » « less
  4. Phase pure PbZr 0.52 Ti 0.48 O 3 (PZT) films with up to 13 mol. % Nb were prepared on Pt-coated Si substrates using chemical solution deposition; charge compensation for Nb was accomplished by reducing the concentration of lead in the film. For high Nb doping levels, (1) superoxidation of the PZT film surface makes the PZT/Pt interface more p-type and, hence reduces electron injection over the Schottky barrier, (2) the bulk charge transport mechanism changes from electron trapping by Ti 4+ to hole migration between lead vacancies, and (3) the ionic conductivity due to migration of oxygen vacancies decreases. For [Formula: see text] Nb, electrical degradation was controlled via field-induced accumulation of oxygen vacancies near the cathode, which, in turn, leads to Schottky barrier lowering and electron trapping by Ti 4+ . In phase pure 13 mol. % Nb doped PZT films, on the other hand, the increase in the leakage current during electrical degradation was dominated by hole migration between lead vacancies ([Formula: see text]. A much lower lifetime and drastic increase in the leakage current upon electrical degradation was observed in mixed phase PNZT films, which was attributed to (1) a more electrically conductive pyrochlore phase and (2) a high concentration of lead vacancies. 
    more » « less
  5. - (Ed.)
    The cubic Laves phase compound CeRu2 with a Kagome substructure of Ru has been investigated to understand myriad fascinating phenomena resulting from competition among its various physical and geometric features. Such phenomena include flat bands, van Hove singularities, Dirac cones, reentrant superconductivity, magnetism, the Fulde–Ferrell–Larkin–Ovchinnikov state, valence fluctuations, time-irreversible anisotropic s-state superconductivity, etc. Extensive studies have thus been carried out since 1958 when the highly unusual coexistence of superconductivity and ferromagnetism was proposed for the mixed compounds (Ce,Gd)Ru2. Activity has accelerated in recent years due to increasing interest in topological states in superconductors. However, there has been little investigation of the mutual influence of these fascinating states. Therefore, we systematically investigated the superconductivity and possible Fermi surface topological change in CeRu2 via magnetic, resistivity, and structural measurements under pressure up to ~168 GPa. An unusual phase diagram that suggests an intriguing interplay between the compound’s superconducting order and Fermi surface topological order has been constructed. A resurgence in its superconducting transition temperature was observed above 28 GPa. Our experiments have identified a structural transition above 76 GPa and a few tantalizing phase transitions driven by high pressure. Our high-pressure results further suggest that superconductivity and Fermi surface topology in CeRu2 are strongly intertwined, 
    more » « less