Abstract Magnetic topological materials are promising for realizing novel quantum physical phenomena. Among these, bulk Mn-rich MnSb 2 Te 4 is ferromagnetic due to Mn Sb antisites and has relatively high Curie temperatures (T C ), which is attractive for technological applications. We have previously reported the growth of materials with the formula (Sb 2 Te 3 ) 1−x (MnSb 2 Te 4 ) x , where x varies between 0 and 1. Here we report on their magnetic and transport properties. We show that the samples are divided into three groups based on the value of x (or the percent septuple layers within the crystals) and their corresponding T C values. Samples that contain x < 0.7 or x > 0.9 have a single T C value of 15–20 K and 20–30 K, respectively, while samples with 0.7 < x < 0.8 exhibit two T C values, one (T C1 ) at ~ 25 K and the second (T C2 ) reaching values above 80 K, almost twice as high as any reported value to date for these types of materials. Structural analysis shows that samples with 0.7 < x < 0.8 have large regions of only SLs, while other regions have isolated QLs embedded within the SL lattice. We propose that the SL regions give rise to a T C1 of ~ 20 to 30 K, and regions with isolated QLs are responsible for the higher T C2 values. Our results have important implications for the design of magnetic topological materials having enhanced properties.
more »
« less
Structural and magnetic properties of molecular beam epitaxy (MnSb2Te4)x(Sb2Te3)1−x topological materials with exceedingly high Curie temperature
Tuning the properties of magnetic topological materials is of interest to realize exotic physical phenomena, new quantum phases and quasiparticles, and topological spintronic devices. However, current topological materials exhibit Curie temperature (TC) values far below those needed for practical applications. In recent years, significant progress has been made to control and optimize TC, particularly through defect-engineering of these structures. Most recently, we reported TC values up to 80 K for (MnSb2Te4)x(Sb2Te3)1−x when 0.7 ≤ x ≤ 0.85 by controlling the composition x and the Mn content in these structures during molecular beam epitaxy growth. In this study, we show further enhancement of the TC, as high as 100 K, by maintaining high Mn content and reducing the growth rate from 0.9 nm/min to 0.5 nm/min. Derivative curves of the Hall resistance and the magnetization reveal the presence of two TC components contributing to the overall value and suggest TC1 and TC2 have distinct origins: excess Mn in MnSb2Te4 septuple layers (SLs) and high Mn content in Sb2−yMnyTe3 quintuple layer (QL) alloys, respectively. To elucidate the mechanisms promoting higher TC values in this system, we show evidence of enhanced structural disorder due to the excess Mn that occupies not only Sb sites but also Te sites, leading to the formation of a new crystal structure for these materials. Learning to control defects that enhance desired magnetic properties and understanding the mechanisms that promote high TC in magnetic topological materials such as (Mn1+ySb2−yTe4)x(Sb2−yMnyTe3)1−x is of great importance to achieve practical quantum devices.
more »
« less
- Award ID(s):
- 2112550
- PAR ID:
- 10595127
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Materials
- Volume:
- 12
- Issue:
- 7
- ISSN:
- 2166-532X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Topology and strong electron correlations are crucial ingredients in emerging quantum materials, yet their intersection in experimental systems has been relatively limited to date. Strongly correlated Weyl semimetals, particularly when magnetism is incorporated, offer a unique and fertile platform to explore emergent phenomena in novel topological matter and topological spintronics. The antiferromagnetic Weyl semimetal Mn 3 Sn exhibits many exotic physical properties such as a large spontaneous Hall effect and has recently attracted intense interest. In this work, we report synthesis of epitaxial Mn 3+ x Sn 1− x films with greatly extended compositional range in comparison with that of bulk samples. As Sn atoms are replaced by magnetic Mn atoms, the Kondo effect, which is a celebrated example of strong correlations, emerges, develops coherence, and induces a hybridization energy gap. The magnetic doping and gap opening lead to rich extraordinary properties, as exemplified by the prominent DC Hall effects and resonance-enhanced terahertz Faraday rotation.more » « less
-
Abstract Spintronics, an evolving interdisciplinary field at the intersection of magnetism and electronics, explores innovative applications of electron charge and spin properties for advanced electronic devices. The topological Hall effect (THE), a key component in spintronics, has gained significance due to emerging theories surrounding noncoplanar chiral spin textures. This study focuses on Mn2‐xZnxSb, a material crystalizing in centrosymmetric space group with rich magnetic phases tunable by Zn contents. Through comprehensive magnetic and transport characterizations, we found that the high‐Zn (x > 0.6) samples display THE which is enhanced with decreasing temperature, while THE in the low‐Zn (x < 0.6) samples show an opposite trend. The coexistence of those distinct temperature dependencies for THE suggests very different magnetic interactions/structures for different compositions and underscores the strong coupling between magnetism and transport in Mn2‐xZnxSb. The findings contribute to understanding topological magnetism in centrosymmetric tetragonal lattices, establishing Mn2‐xZnxSb as a unique platform for exploring tunable transport effects and opening avenues for further exploration in the realm of spintronics.more » « less
-
We perform a systematic investigation of several crystal structures, based on monolayer MnBi2Te4, of the form MnBiBiiXi2Xii2 using first-principles calculations. Our analysis shows that the most energetically favorable bonding configuration of the constituent elements in monolayer MnBiBiiXi2Xii2 is determined by the bond length between the Mn atom and its nearest X-site atoms. Tuning the bonding configuration of the material alters the magnetic, electronic, and topological properties. We also calculate the magnetic exchange parameters and magnetic anisotropy energy of the predicted structures. The calculations show that the elements at the X sites mainly determine the magnetic properties. Finally, we propose a stable phase of monolayer MnBi2S2Te2 (i.e., γ-MnBi2S2Te2) that exhibits the quantum anomalous Hall effect (QAHE). This study demonstrates that the bonding configuration of MnBi2Te4-type materials provides avenues for tuning the magnetic, electronic, and topological properties of van der Waals (vdW) materials.more » « less
-
Abstract This study employs a data‐driven machine learning approach to investigate specific ferroelectric properties of Al1−xScxN thin films, targeting their application in next‐generation nonvolatile memory (NVM) devices. This approach analyzes a vast design space, encompassing over a million data points, to predict a wide range of coercive field values that are crucial for optimizing Al1−xScxN‐based NVM devices. We evaluated seven machine learning models to predict the coercive field across a range of conditions, identifying the random forest algorithm as the most accurate, with a testR2value of 0.88. The model utilized five key features: film thickness, measurement frequency, operating temperature, scandium concentration, and growth temperature to predict the design space. Our analysis spans 13 distinct scandium concentrations and 13 growth temperatures, encompassing thicknesses from 9–1000 nm, frequencies from 1 to 100 kHz, and operating temperatures from 273 to 700 K. The predictions revealed dominant coercive field values between 3.0 and 4.5 MV/cm, offering valuable insights for the precise engineering of Al1−xScxN‐based NVM devices. This work underscores the potential of machine learning in guiding the development of advanced ferroelectric materials with tailored properties for enhanced device performance.more » « less
An official website of the United States government
