skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2236879

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The effect of ionic radii sizes on magnetostriction is studied in relation to structural and magnetic properties. To explore the effect of the chemical pressure, nanoparticles of rare‐earth (RE) orthoferrites, SmFeO3, DyFeO3, HoFeO3, and LuFeO3are studied using X‐ray diffraction, field emission scanning electron microscopy, and Raman spectroscopy. Magnetic and magnetostriction measurements are also performed. In these orthoferrites, the coordination of the RE ion is eightfold, whereas the RE ionic radii are significantly different, which directly influences the structural parameters. The distortion of FeO6octahedra is observed as a result of changing chemical pressure within the lattice. The different magnitudes of magnetostriction in RE orthoferrites can be attributed to the different degrees of distortion of FeO6octahedra, R–O dynamics, and spin–orbit interactions in the system. The maximum value of magnetostriction (∼ 19 ppm) and magnetization at 2 K (30.64 emu/g) is demonstrated by HoFeO3. Comparison of structural parameters of the samples to their respective bulk counterparts indicated relative structural distortion in nanoparticles. 
    more » « less
  2. Abstract This work is on the design, fabrication and characterization of a hexagonal ferrite band-pass filter that can be tuned either with a magnetic field or an electric field. The filter operation is based on a straight-edge Y-type hexagonal ferrite resonator symmetrically coupled to the input and output microstrip transmission lines. The Zn2Yfilter demonstrated magnetic field tunability in the 8–12 GHz frequency range by applying an in-plane bias magnetic fieldH0provided by a built-in permanent magnet. The insertion loss and 3 dB bandwidth within this band were 8.6 ± 0.4 dB and 350 ± 40 MHz, respectively. The electric fieldEtunability of the pass-band of the device was facilitated by the nonlinear magnetoelectric effect (NLME) in the ferrite. TheE-tuning of the center frequency of the filter by (1150 ± 90) MHz was obtained for an input DC electric power of 200 mW. With efforts directed at a significant reduction in the insertion loss, the compact and power efficient magnetic and electric field tunable Zn2Y band-pass filter has the potential for use in novel reconfigurable RF/microwave devices and communication systems. 
    more » « less
  3. We demonstrate indirect electric-field control of ferromagnetic resonance (FMR) in devices that integrate the low-loss, molecule-based, room-temperature ferrimagnet vanadium tetracyanoethylene (V[TCNE]x∼2) mechanically coupled to PMN-PT piezoelectric transducers. Upon straining the V[TCNE]x films, the FMR frequency is tuned by more than 6 times the resonant linewidth with no change in Gilbert damping for samples with α = 6.5 × 10−5. We show this tuning effect is due to a strain-dependent magnetic anisotropy in the films and find the magnetoelastic coefficient |λs| ∼ (1–4.4) ppm, backed by theoretical predictions from density-functional theory calculations and magnetoelastic theory. Noting the rapidly expanding application space for strain-tuned FMR, we define a new metric for magnetostrictive materials, magnetostrictive agility, given by the ratio of the magnetoelastic coefficient to the FMR linewidth. This agility allows for a direct comparison between magnetostrictive materials in terms of their comparative efficacy for magnetoelectric applications requiring ultra-low loss magnetic resonance modulated by strain. With this metric, we show V[TCNE]x is competitive with other magnetostrictive materials, including YIG and Terfenol-D. This combination of ultra-narrow linewidth and magnetostriction, in a system that can be directly integrated into functional devices without requiring heterogeneous integration in a thin film geometry, promises unprecedented functionality for electric-field tuned microwave devices ranging from low-power, compact filters and circulators to emerging applications in quantum information science and technology. 
    more » « less
  4. In the present work, we have synthesized rare-earth ion modified Bi4−xRExTi2Fe0.7Co0.3O12−δ (RE = Dy, Sm, La) multiferroic compounds by the conventional solid-state route. Analysis of X-ray diffraction by Rietveld refinement confirmed the formation of a polycrystalline orthorhombic phase. The morphological features revealed a non-uniform, randomly oriented, plate-like grain structure. The peaks evident in the Raman spectra closely corresponded to those of orthorhombic Aurivillius phases. Dielectric studies and impedance measurements were carried out. Asymmetric complex impedance spectra suggested the relaxation of charge carriers belonging to the non-Debye type and controlled by a thermally activated process. Temperature-dependent AC conductivity data showed a change of slope in the vicinity of the phase transition temperature of both magnetic and electrical coupling natures. Based on the universal law and its exponent nature, one can suppose that the conduction process is governed by a small polaron hopping mechanism but significant distortion of TiO6 octahedral. The doping of the A-sites with rare-earth element ions and changes in the concentrations of Fe and Co ions located on the B-sites manifested themselves in saturated magnetic hysteresis loops, indicating competitive interactions between ferroelectric and canted antiferromagnetic spins. The magnetic order in the samples is attributed to pair-wise interactions between adjacent Fe3+–O–Fe3+, Co2+/3+–O–Co3+/2+, and Co2+/3+–O–Fe3+ ions or Dzyaloshinskii–Moriya interactions among magnetic ions in the adjacent sub-lattices. As a result, enhanced magnetoelectric coefficients of 42.4 mV/cm-Oe, 30.3 mV/cm-Oe, and 21.6 mV/cm-Oe for Bi4−xDyxTi2Fe0.7Co0.3O12−δ (DBTFC), Bi4−xLaxTi2Fe0.7Co0.3O12−δ (LBTFC), and Bi4−xSmxTi2Fe0.7Co0.3O12−δ (SBTFC), respectively, have been obtained at lower magnetic fields (<3 kOe). The strong coupling of the Aurivillius compounds observed in this study is beneficial to future multiferroic applications. 
    more » « less
  5. Magnetoelectric (ME) effects in a ferromagnetic and piezoelectric composite are the changes in the polarization caused by a magnetic field or the changes in the magnetization caused by an electric field. These effects are aided by the mechanical deformation in the ferroic phases caused by the combination of magnetostriction and piezoelectricity. Interest in ME effects is due to a variety of physical phenomena they exhibit, as well as their potential applications in the creation of highly sensitive magnetic field sensors and other electronic devices. Linear ME effects in structures with layers of different ferroic materials have been studied extensively. However, nonlinear ME effects, which are caused by the nonlinearity of the magnetic, dielectric, and acoustic properties of ferromagnets and piezoelectrics, are less well understood. The purpose of this review is to summarize the current state of knowledge on nonlinear ME (NLME) effects in composite heterostructures and to discuss their potential applications. The review begins by discussing the characteristics of materials that are conductive to the occurrence of NLME effects and ferromagnetic-piezoelectric materials that are most commonly used to study such effects. The review then provides details on theoretical approaches to the description of NLME effects in heterostructures and experimental methods for studying these effects. Finally, the review presents a chronological overview of the experimentally observed NLME effects in composite structures excited by low-frequency and pulsed magnetic or electric fields. The review concludes with a discussion on the potential applications of NLME effects for highly sensitive magnetic field sensors. 
    more » « less
  6. The magnetoelectric effect (ME) is an important strain mediated-phenomenon in a ferromagnetic-piezoelectric composite for a variety of sensors and signal processing devices. A bias magnetic field, in general, is essential to realize a strong ME coupling in most composites. Magnetic phases with (i) high magnetostriction for strong piezomagnetic coupling and (ii) large anisotropy field that acts as a built-in bias field are preferred so that miniature, ME composite-based devices can operate without the need for an external magnetic field. We are able to realize such a magnetic phase with a composite of (i) barium hexaferrite (BaM) with high magnetocrystalline anisotropy field and (ii) nickel ferrite (NFO) with high magnetostriction. The BNx composites, with (100 − x) wt.% of BaM and x wt.% NFO, for x = 0–100, were prepared. X-ray diffraction analysis shows that the composites did not contain any impurity phases. Scanning electron microscopy images revealed that, with an increase in NFO content, hexagonal BaM grains become prominent, leading to a large anisotropy field. The room temperature saturation magnetization showed a general increase with increasing BaM content in the composites. NFO rich composites with x ≥ 60 were found to have a large magnetostriction value of around −23 ppm, comparable to pure NFO. The anisotropy field HA of the composites, determined from magnetization and ferromagnetic resonance (FMR) measurements, increased with increasing NFO content and reached a maximum of 7.77 kOe for x = 75. The BNx composite was cut into rectangular platelets and bonded with PZT to form the bilayers. ME voltage coefficient (MEVC) measurements at low frequencies and at mechanical resonance showed strong coupling at zero bias for samples with x ≥ 33. This large in-plane HA acted as a built-in field for strong ME effects under zero external bias in the bilayers. The highest zero-bias MEVC of ~22 mV/cm Oe was obtained for BN75-PZT bilayers wherein BN75 also has the highest HA. The Bilayer of BN95-PZT showed a maximum MEVC ~992 mV/cm Oe at electromechanical resonance at 59 kHz. The use of hexaferrite–spinel ferrite composite to achieve strong zero-bias ME coupling in bilayers with PZT is significant for applications related to energy harvesting, sensors, and high frequency devices. 
    more » « less
  7. Magnetocaloric properties of TbCrO3 and TmCrO3 are reported and compared with those of the previously reported rare-earth chromites RCrO3 (R = Gd, Dy, Ho, and Er) and other perovskite-type oxides. The samples of TbCrO3 and TmCrO3 in this work were synthesized using a citrate gel combustion technique, and their magnetic properties were investigated and compared with those reported previously on RCrO3 (R = Gd, Dy, Ho, and Er). The Cr3+–Cr3+ ordering temperatures were found to strongly depend on the ionic radii of the rare-earth. By fitting the dc magnetization data with modified Curie–Weiss law including the Dzyaloshinsky–Moriya antisymmetric exchange interaction (D) and the symmetric exchange constant Je, spin canting angles (α) were obtained. In general, α was found to increase with the decreasing ionic radii of R3+ in RCrO3. The magnetocaloric properties investigated included the magnetic entropy change (−ΔS) for a given change in magnetic field (ΔH), the corresponding adiabatic temperature change (ΔTad), and their relative variations (ΔTad/ΔH) and (−ΔS/ΔH). It is observed that for RCrO3, (−ΔS) measured in the vicinity of the ordering temperature of R3+–R3+, varies almost as G2/3 where G is the de Gennes factor. Among RCrO3, GdCrO3 shows the largest value of (−ΔS/ΔH), because of its largest G factor and its magnitudes of (ΔTad/ΔH) and (−ΔS/ΔH) compare well with the reported values for the perovskites GdFeO3 and EuTiO3. These comparisons presented here provide useful information on the potential use of these materials in magneto-refrigeration technology. 
    more » « less