Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Liquid metals (LMs), renowned for their high conductivity and large deformability, find increasing applications including in flexible electronics and soft robotics. One critical process in these applications is the precise patterning of LMs into desired shapes. Yet, existing LM patterning techniques predominantly focus on 2D patterns due to challenges posed by the inherent fluidity and leakage of LMs. Here, we introduce an approach that bypasses these limitations, enabling the creation of complex 3D leakage‐free LM structures. This is achieved through mechanical programming of 2D magnetically immobilized LM paste formed via incorporating magnetic particles into LMs. Such composite effectively resists leakage due to the combined effect of strong magnetic inter‐attraction within the porous magnetic networks and the high surface tension of LMs, while retaining the high conductivity. Diverse freestanding magnetic LM structures, obtained upon LM solidification at ambient temperature, dynamically morph between their 2D and various 3D configurations through multiple cycles of induction heating and magnetic‐assisted reprogramming, featuring large compression resistance and self‐healing capabilities. Potential applications of these leakage‐resistant, shape‐adaptable structures are demonstrated through a helical magnetic LM antenna, which showcases its efficiency in wireless communication and energy harvesting.more » « less
-
Abstract The effect of ionic radii sizes on magnetostriction is studied in relation to structural and magnetic properties. To explore the effect of the chemical pressure, nanoparticles of rare‐earth (RE) orthoferrites, SmFeO3, DyFeO3, HoFeO3, and LuFeO3are studied using X‐ray diffraction, field emission scanning electron microscopy, and Raman spectroscopy. Magnetic and magnetostriction measurements are also performed. In these orthoferrites, the coordination of the RE ion is eightfold, whereas the RE ionic radii are significantly different, which directly influences the structural parameters. The distortion of FeO6octahedra is observed as a result of changing chemical pressure within the lattice. The different magnitudes of magnetostriction in RE orthoferrites can be attributed to the different degrees of distortion of FeO6octahedra, R–O dynamics, and spin–orbit interactions in the system. The maximum value of magnetostriction (∼ 19 ppm) and magnetization at 2 K (30.64 emu/g) is demonstrated by HoFeO3. Comparison of structural parameters of the samples to their respective bulk counterparts indicated relative structural distortion in nanoparticles.more » « less
-
Abstract This work is on the design, fabrication and characterization of a hexagonal ferrite band-pass filter that can be tuned either with a magnetic field or an electric field. The filter operation is based on a straight-edge Y-type hexagonal ferrite resonator symmetrically coupled to the input and output microstrip transmission lines. The Zn2Yfilter demonstrated magnetic field tunability in the 8–12 GHz frequency range by applying an in-plane bias magnetic fieldH0provided by a built-in permanent magnet. The insertion loss and 3 dB bandwidth within this band were 8.6 ± 0.4 dB and 350 ± 40 MHz, respectively. The electric fieldEtunability of the pass-band of the device was facilitated by the nonlinear magnetoelectric effect (NLME) in the ferrite. TheE-tuning of the center frequency of the filter by (1150 ± 90) MHz was obtained for an input DC electric power of 200 mW. With efforts directed at a significant reduction in the insertion loss, the compact and power efficient magnetic and electric field tunable Zn2Y band-pass filter has the potential for use in novel reconfigurable RF/microwave devices and communication systems.more » « less
-
GdFe₀.₅Cr₀.₅O₃ (GFCO) is a single-phase magnetoelectric multiferroic at temperatures close to ambient. Epitaxial thin films of this orthorhombic perovskite would offer the possibility of tuning its electrical and magnetic properties through control of strain and interface effects. Here, 200 nm thick GFCO thin films have been grown on (001) SrTiO3 substrates by solution synthesis and the microstructures have been investigated by cross-sectional transmission electron microscopy. The GFCO films are epitaxial but exhibit a mixture of three different orientation relationships in the form of domains ≈50 nm in diameter. Geometric analyses of the lattice matching show that the misfits for these domains would be tensile with magnitudes of less than 2 %. Pockets of a SrCrO4 reaction product form at the film/substrate interface and do not exhibit any simple orientation with the adjacent phases. The product morphology indicates that the outward diffusion of Sr is more rapid than the inward diffusion of Cr, and this is related to the microstructures of the surrounding phases. These data show that epitaxial films of GFCO can be obtained via this route, but careful control of process parameters would be required to produce single-domain films, and alternate substrates or buffer layers would be needed to inhibit SrCrO4 formation.more » « lessFree, publicly-accessible full text available September 4, 2026
-
This report is on Co and Ti substituted M-type barium and strontium hexagonal ferrites that are reported to be single phase multiferroics due to a transition from Neel type ferrimagnetic order to a spiral spin structure that is accompanied by a ferroelectric polarization in an applied magnetic field. The focus here is the nature of magnetoelectric (ME) interactions in the bilayers of ferroelectric PZT and Co and Ti substituted BaM and SrM. The ME coupling in the ferrite-PZT bilayers arise due to the transfer of magnetostriction-induced mechanical deformation in a magnetic field in the ferrite resulting in an induced electric field in PZT. Polycrystalline Co and Ti doped ferrites, Ba (CoTi)x Fe12−2xO19, (BCTx), and Sr (CoTi)x Fe12−2xO19 (SCTx) (x = 0–4) were found to be free of impurity phases for all x-values except for SCTx, which had a small amount of α-Fe2O3 in the X-ray diffraction patterns for x ≤ 2.0. The magnetostriction for the ferrites increased with applied filed H to a maximum value of around 2 to 6 ppm for H~5 kOe. BCTx/SCTx samples showed ferromagnetic resonance (FMR) for x = 1.5–2.0, and the estimated anisotropy field was on the order of 5 kOe. The magnetization increased with the amount of Co and Ti doping, and it decreased rapidly with x for x > 1.0. Measurements of ME coupling strengths were conducted on the bilayers of BCTx/SCTx platelets bonded to PZT. The bilayer was subjected to an AC and DC magnetic field H, and the magnetoelectric voltage coefficient (MEVC) was measured as a function of H and frequency of the AC field. For BCTx-PZT, the maximum value of MEVC at low frequency was ~5 mV/cm Oe, and a 40-fold increase at electromechanical resonance (EMR). SCTx–PZT composites also showed a similar behavior with the highest MEVC value of ~14 mV/cm Oe at low frequencies and ~200 mV/cm Oe at EMR. All the bilayers showed ME coupling for zero magnetic bias due to the magnetocrystalline anisotropy field in the ferrite that provided a built-in bias field.more » « lessFree, publicly-accessible full text available June 27, 2026
-
Composites of ferromagnetic and ferroelectric phases are of interest for studies on mechanical strain-mediated coupling between the two phases and for a variety of applications in sensors, energy harvesting, and high-frequency devices. Nanocomposites are of particular importance since their surface area-to-volume ratio, a key factor that determines the strength of magneto-electric (ME) coupling, is much higher than for bulk or thin-film composites. Core–shell nano- and microcomposites of the ferroic phases are the preferred structures, since they are free of any clamping due to substrates that are present in nanobilayers or nanopillars on a substrate. This review concerns recent efforts on ME coupling in coaxial fibers of spinel or hexagonal ferrites for the magnetic phase and PZT or barium titanate for the ferroelectric phase. Several recent studies on the synthesis and ME measurements of fibers with nickel ferrite, nickel zinc ferrite, or cobalt ferrite for the spinel ferrite and M-, Y-, and W-types for the hexagonal ferrites were considered. Fibers synthesized by electrospinning were found to be free of impurity phases and had uniform core and shell structures. Piezo force microscopy (PFM) and scanning microwave microscopy (SMM) measurements of strengths of direct and converse ME effects on individual fibers showed evidence for strong coupling. Results of low-frequency ME voltage coefficient and magneto-dielectric effects on 2D and 3D films of the fibers assembled in a magnetic field, however, were indicative of ME couplings that were weaker than in bulk or thick-film composites. A strong ME interaction was only evident from data on magnetic field-induced variations in the remnant ferroelectric polarization in the discs of the fibers. Follow-up efforts aimed at further enhancement in the strengths of ME coupling in core–shell composites are also discussed in this review.more » « lessFree, publicly-accessible full text available May 1, 2026
-
This report is on experiments and theory on the process of optically stimulated electron population density redistribution in Si-substituted yttrium-iron garnet single crystals at 77 K. It was determined that a photo-induced uniaxial anisotropy field arose in the YIG:Si sample in response to illumination by quasi-linearly polarized laser (λ = 808 nm) leading to redistribution of Fe2+ ions among the nonequivalent octahedral sites. The photo-induced field was measured by variation of ferromagnetic resonance (FMR) frequencies in the X-band. The measured FMR frequency shift demonstrated a pronounced dependence on the polarization vector orientation with respect to crystallographic axes, in accordance with the theory discussed here. The frequency shift dependence on light intensity (for optimal polarization orientation) was found to be nearly linear, at least within the output intensity range of the optical source. The maximum frequency shift was −130 MHz for 75 mW applied optical power. A similar phenomenon was also observed at room temperature but was attributed to the sample heating by the incident light. The results presented here demonstrate the potential of the phenomenon for application in the development of ferrite signal processing devices with dual tuning by both magnetic field and optical irradiation.more » « less
-
This report is on magneto-electric (ME) interactions in bulk composites with coaxial fibers of nickel–zinc ferrite and PZT. The core–shell fibers of PZT and Ni1−xZnxFe2O4 (NZFO) with x = 0–0.5 were made by electrospinning. Both kinds of fibers, either with ferrite or PZT core and with diameters in the range of 1–3 μm were made. Electron and scanning probe microscopy images indicated well-formed fibers with uniform core and shell structures and defect-free interface. X-ray diffraction data for the fibers annealed at 700–900 °C did not show any impurity phases. Magnetization, magnetostriction, ferromagnetic resonance, and polarization P versus electric field E measurements confirmed the ferroic nature of the fibers. For ME measurements, the fibers were pressed into disks and rectangular platelets and then annealed at 900–1000 °C for densification. The strengths of strain-mediated ME coupling were measured by the H-induced changes in remnant polarization Pr and by low-frequency ME voltage coefficient (MEVC). The fractional change in Pr under H increased in magnitude, from +3% for disks of NFO–PZT to −82% for NZFO (x = 0.3)-PZT, and a further increase in x resulted in a decrease to a value of −3% for x = 0.5. The low-frequency MEVC measured in disks of the core–shell fibers ranged from 6 mV/cm Oe to 37 mV/cm Oe. The fractional changes in Pr and the MEVC values were an order of magnitude higher than for bulk samples containing mixed fibers with a random distribution of NZFO and PZT. The bulk composites with coaxial fibers have the potential for use as magnetic field sensors and in energy-harvesting applications.more » « less
-
We demonstrate indirect electric-field control of ferromagnetic resonance (FMR) in devices that integrate the low-loss, molecule-based, room-temperature ferrimagnet vanadium tetracyanoethylene (V[TCNE]x∼2) mechanically coupled to PMN-PT piezoelectric transducers. Upon straining the V[TCNE]x films, the FMR frequency is tuned by more than 6 times the resonant linewidth with no change in Gilbert damping for samples with α = 6.5 × 10−5. We show this tuning effect is due to a strain-dependent magnetic anisotropy in the films and find the magnetoelastic coefficient |λs| ∼ (1–4.4) ppm, backed by theoretical predictions from density-functional theory calculations and magnetoelastic theory. Noting the rapidly expanding application space for strain-tuned FMR, we define a new metric for magnetostrictive materials, magnetostrictive agility, given by the ratio of the magnetoelastic coefficient to the FMR linewidth. This agility allows for a direct comparison between magnetostrictive materials in terms of their comparative efficacy for magnetoelectric applications requiring ultra-low loss magnetic resonance modulated by strain. With this metric, we show V[TCNE]x is competitive with other magnetostrictive materials, including YIG and Terfenol-D. This combination of ultra-narrow linewidth and magnetostriction, in a system that can be directly integrated into functional devices without requiring heterogeneous integration in a thin film geometry, promises unprecedented functionality for electric-field tuned microwave devices ranging from low-power, compact filters and circulators to emerging applications in quantum information science and technology.more » « less
-
In the present work, we have synthesized rare-earth ion modified Bi4−xRExTi2Fe0.7Co0.3O12−δ (RE = Dy, Sm, La) multiferroic compounds by the conventional solid-state route. Analysis of X-ray diffraction by Rietveld refinement confirmed the formation of a polycrystalline orthorhombic phase. The morphological features revealed a non-uniform, randomly oriented, plate-like grain structure. The peaks evident in the Raman spectra closely corresponded to those of orthorhombic Aurivillius phases. Dielectric studies and impedance measurements were carried out. Asymmetric complex impedance spectra suggested the relaxation of charge carriers belonging to the non-Debye type and controlled by a thermally activated process. Temperature-dependent AC conductivity data showed a change of slope in the vicinity of the phase transition temperature of both magnetic and electrical coupling natures. Based on the universal law and its exponent nature, one can suppose that the conduction process is governed by a small polaron hopping mechanism but significant distortion of TiO6 octahedral. The doping of the A-sites with rare-earth element ions and changes in the concentrations of Fe and Co ions located on the B-sites manifested themselves in saturated magnetic hysteresis loops, indicating competitive interactions between ferroelectric and canted antiferromagnetic spins. The magnetic order in the samples is attributed to pair-wise interactions between adjacent Fe3+–O–Fe3+, Co2+/3+–O–Co3+/2+, and Co2+/3+–O–Fe3+ ions or Dzyaloshinskii–Moriya interactions among magnetic ions in the adjacent sub-lattices. As a result, enhanced magnetoelectric coefficients of 42.4 mV/cm-Oe, 30.3 mV/cm-Oe, and 21.6 mV/cm-Oe for Bi4−xDyxTi2Fe0.7Co0.3O12−δ (DBTFC), Bi4−xLaxTi2Fe0.7Co0.3O12−δ (LBTFC), and Bi4−xSmxTi2Fe0.7Co0.3O12−δ (SBTFC), respectively, have been obtained at lower magnetic fields (<3 kOe). The strong coupling of the Aurivillius compounds observed in this study is beneficial to future multiferroic applications.more » « less
An official website of the United States government
