skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-Robot Cooperative Socially-Aware Navigation Using Multi-Agent Reinforcement Learning
In public spaces shared with humans, ensuring multi-robot systems navigate without collisions while respecting social norms is challenging, particularly with limited communication. Although current robot social navigation techniques leverage advances in reinforcement learning and deep learning, they frequently overlook robot dynamics in simulations, leading to a simulation-to-reality gap. In this paper, we bridge this gap by presenting a new multi-robot social navigation environment crafted using Dec-POSMDP and multi-agent reinforcement learning. Furthermore, we introduce SAMARL: a novel benchmark for cooperative multi-robot social navigation. SAMARL employs a unique spatial-temporal transformer combined with multi-agent reinforcement learning. This approach effectively captures the complex interactions between robots and humans, thus promoting cooperative tendencies in multi-robot systems. Our extensive experiments reveal that SAMARL outperforms existing baseline and ablation models in our designed environment. Demo videos for this work can be found at: https://sites.google.com/view/samarl  more » « less
Award ID(s):
1846221
PAR ID:
10595350
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-8457-4
Page Range / eLocation ID:
12353 to 12360
Format(s):
Medium: X
Location:
Yokohama, Japan
Sponsoring Org:
National Science Foundation
More Like this
  1. Many domains of AI and its effects are established, which mainly rely on their integration modeling cognition of human and AI agents, collecting and representing knowledge using them at the human level, and maintaining decision-making processes towards physical action eligible to and in cooperation with humans. Especially in human-robot interaction, many AI and robotics technologies are focused on human- robot cognitive modeling, from visual processing to symbolic reasoning and from reactive control to action recognition and learning, which will support human-multi-agent cooperative achieving tasks. However, the main challenge is efficiently combining human motivations and AI agents’ purposes in a sharing architecture and reaching a consensus in complex environments and missions. To fill this gap, this workshop brings together researchers from different communities inter- ested in multi-agent systems (MAS) and human-robot interaction (HRI) to explore potential approaches, future research directions, and domains in human-multi-agent cognitive fusion. 
    more » « less
  2. In real-world multi-robot systems, performing high-quality, collaborative behaviors requires robots to asynchronously reason about high-level action selection at varying time durations. Macro-Action Decentralized Partially Observable Markov Decision Processes (MacDec-POMDPs) provide a general framework for asynchronous decision making under uncertainty in fully cooperative multi-agent tasks. However, multi-agent deep reinforcement learning methods have only been developed for (synchronous) primitive-action problems. This paper proposes two Deep Q-Network (DQN) based methods for learning decentralized and centralized macro-action-value functions with novel macro-action trajectory replay buffers introduced for each case. Evaluations on benchmark problems and a larger domain demonstrate the advantage of learning with macro-actions over primitive-actions and the scalability of our approaches. 
    more » « less
  3. Humans are well-adept at navigating public spaces shared with others, where current autonomous mobile robots still struggle: while safely and efficiently reaching their goals, humans communicate their intentions and conform to unwritten social norms on a daily basis; conversely, robots become clumsy in those daily social scenarios, getting stuck in dense crowds, surprising nearby pedestrians, or even causing collisions. While recent research on robot learning has shown promises in data-driven social robot navigation, good-quality training data is still difficult to acquire through either trial and error or expert demonstrations. In this work, we propose to utilize the body of rich, widely available, social human navigation data in many natural human-inhabited public spaces for robots to learn similar, human-like, socially compliant navigation behaviors. To be specific, we design an open-source egocentric data collection sensor suite wearable by walking humans to provide multimodal robot perception data; we collect a large-scale (~100 km, 20 hours, 300 trials, 13 humans) dataset in a variety of public spaces which contain numerous natural social navigation interactions; we analyze our dataset, demonstrate its usability, and point out future research directions and use cases.11Website: https://cs.gmu.edu/-xiao/Research/MuSoHu/ 
    more » « less
  4. null (Ed.)
    Multi-robot cooperation requires agents to make decisions that are consistent with the shared goal without disregarding action-specific preferences that might arise from asymmetry in capabilities and individual objectives. To accomplish this goal, we propose a method named SLiCC: Stackelberg Learning in Cooperative Control. SLiCC models the problem as a partially observable stochastic game composed of Stackelberg bimatrix games, and uses deep reinforcement learning to obtain the payoff matrices associated with these games. Appropriate cooperative actions are then selected with the derived Stackelberg equilibria. Using a bi-robot cooperative object transportation problem, we validate the performance of SLiCC against centralized multi-agent Q-learning and demonstrate that SLiCC achieves better combined utility. 
    more » « less
  5. Shielding is an effective method for ensuring safety in multi-agent domains; however, its applicability has previously been limited to environments for which an approximate discrete model and safety specification are known in advance. We present a method for learning shields in cooperative fully-observable multi-agent environments where neither a model nor safety specification are provided, using architectural constraints to realize several important properties of a shield. We show through a series of experiments that our learned shielding method is effective at significantly reducing safety violations, while largely maintaining the ability of an underlying reinforcement learning agent to optimize for reward. 
    more » « less